'AD-A252 125
AR

DTIC

S

SRS REE y m IR

ELECTE Zup,

A Performance-Based

Comparison of Object-Oriented
Simulation Tools

Edward H. Bensley
Victor T. Giddings
Jonathan 1. Leivent
Ronald J. Watro

TBISTRIBOTION STATEMENT K|

Approved for publi¢ reloase;
Distribution UnBmited

MITRE

Bedford, Massachusetts

MTR92B0000051
April 1992

92-16658
A

A Performance-Based
Comparison of Object-Oriented
Simulation Tools

Edward H. Bensley
Victor T. Giddings
Jonathan I. Leivent
Ronald J. Watro

Contract Sponsor MSR
Contract No. NA
Project No. 91330
Dept. D070

Approved for public release; distribution
unlimited.

MITRE

Bedford, Massachusetts

Acesssiom For
NT: GRAM

MTR92B0000051
April 1992

rril TAR O
. Ynesacuneed 0
; Justifieatien
ey
;_Distributien/

Availability Cedes

Dist

%\

[Avail amd/or
Special

Department Approval:

MITRE Project Approval: _&.‘0

Edward H. wlgensley

ABSTRACT

This paper compares the performance and features of five different tools for object-oriented
simulation. Three of the tools (MODSIM II, SES/workbench, and Sim++) are commercial
products that are targeted exclusively at simulation work. Also examined are simulations in
Smalltalk-80 and our own, non-commercial C++ simulation library, called MOOSE (MITRE
Obiject-Oriented Simulation Executive). For each of the tools, we discuss the support for
simulation, the support for object-oriented design and the degree to which these areas are
effectively integrated. We report the results of performance testing of the tools using six
concise benchmarks, each devised to test a specific feature, and one larger simulation, devised
to compare general performance. Also included are partial results on ERIC, an object-oriented
simulation tool developed at Rome Laboratories.

ACKNOWLEDGMENTS

This paper was presented at the 1992 Object-Oriented Simulation Conference, part of the
Society for Computer Simulation (SCS) Western Simulation Multiconference, held
20-22 January in Newport Beach, CA. A condensed version of the paper appears in the
conference proceedings [Bensley 92].

The Sim++ code for one of our benchmarks (the bank simulation) was written by Brett Cui
under support from the Software Engineering Core Project.

The following trademarks are used throughout the remainder of the document:

Butterfly is a trademark of BBN Advanced Computers, Inc.

Computing Surface is a trademark of Meiko Scientific Corporation.

Jade, Sim++, and TimeWarp are trademarks of Jade Simulations International
Corporation.

MODSIM II and SIMGRAPHICS 1II are trademarks and service marks of CACI
Products Company.

Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc.

Smalltalk-80 and Otjectworks are trademarks of ParcPlace Systems, Inc.

SES/workbench, SES/design and SES/sim are trademarks of Scientific and
Engineering Software, Inc.

iv

TABLE OF CONTENTS

SECTION PAGE
1 Introduction 1
2 Design Issues 3
Approaches to Modeling 3
Event Selection Strategy 3

World Views 4

Support for Object-Oriented Development 7
Integration of Objects and Simulation Time 7
Inheritance 9

Strong Types and Object-Orientation 9

Dynamic Creation of Simulation Objects 11
Simulation Constructs 12
Time Control 12
Preemption 12
Pre-Defined Classes 12
Probability Distributions 13

Data Collection 13
Extensibility 13
Graphical Interfaces and Animation 13

3 Tools 15
MODSIM II 15
SES/workbench 16
Sim++ 17
Smalltalk-80 18

A Prototype C++ Simulation Library - MOOSE 18
ERIC 19

4 Benchmarks . 21
Single Feature Benchmarks 21
Test 1 - Sorting Threads 21

Test 2 - Thread Creation 22

Test 3 - Synchronous Thread Creation 22

Test 4 - Resource Queues 23

Test S - Interrupts 23

Bank Simulation Benchmark 24

SECTION
5 Timing Results

Test 1

Test 2

Test 3

Test 4

Test 5

Bank Simulation
6 Summary and Concluding Remarks
List of References
Appendix A MODSIM II Code
Appendix B SES/workbench Code
Appendix C Sim++ Code

Sim++ Bank Simulation Description
Sim++ Bank Simulation Code

Appendix D Smalitalk-80 Code
AppendixE MOOSE Code
Appendix F ERIC Code

Distribution List

PAGE
27
27
27
31
31
31
37
39
41
43
49
53

58
63

73
77
83
85

LIST OF FIGURES

FIGURE PAGE
1 Bank Simulation Sketch 25
2 Test 1 Performance 28
3 Test 2 Performance 29
4 Test 2 Performance (no Smalltalk-80 or ERIC) 30
5 Test 3a Performance 32
6 Test 3b Performance 33
7 Test4 Performance 34
8 Test 4 Performance (Smalltalk-80, MODSIM II, and ERIC are omitted) 35
9 Test S Performance 36
10 Bank Simulation Performance 37
11 SES/workbench Graphs 50
12 Major Entities and Event Flows 58

SECTION 1
INTRODUCTION

This paper compares the performance and features of six different tools for object-oriented
simulation. Three of the tools (MODSIM II, SES/workbench, and Sim++) are commercial
products that are targeted at simulation work. We also examine simulations in Smalltalk-80,
ERIC, and our own, non-commercial C++ simulation library, called MOOSE (MITRE Object-
Oriented Simulation Executive). MOOSE is included to represent a simulation system coded
quickly (in less than two staff months) using a standard object-oriented programming language
without explicit simulation support. ERIC was a late addition to our study, at the request of its
developers at Rome Laboratories. We did not analyze the features provided by it, and two of
the benchmarks were not completed in it.

In this work, we focus exclusively on languages and tools that provide at least a minimum
amount of explicit support for object orientation. The advantages of object orientation as a
structuring methodology are, by now, well-known. However, the emphasis in object-oriented
systems on making decisions at run time can result in significant performance overhead. Our
survey attempts to evaluate performance of the systems in quantitative terms, and to
qualitatively assess the success of the merging of object orientation and simulation paradigms
in the systems.

We designed several concise benchmarks to compare performance of particular features, and
one larger simulation to compare general performance. In developing the benchmark code, we
noted significant differences between tools in three areas: the modeling approach encouraged
or required by the tools, the degree to which the features of object-oriented programming are
supported, and the interaction of the modeling considerations with the object-oriented features.

The simulation tools that we consider provide and support a variety of simulation constructs.
ERIC provides support for only event-driven simulation. Two of our benchmarks require a
notion of interrupt, which is best understood in the process-driven approach to simulation, and
these benchmarks were not coded in ERIC. For Smalltalk-80, we used a simulation executive
based on the one given in the Smalltalk “blue book” [Goldberg 83]. ParcPlace Systems, the
developer of Smalltalk-80, provides no explicit support for simulation. We also examined the
option of starting from an object-oriented programming language, and building a simulation
executive of our own. One of us (Leivent) designed and built the MOOSE C++ library for
simulation. The design and implementation of MOOSE were undertaken when preliminary
benchmarks on some of the commercial tools suggested that they could not handle large
simulation applications efficiently. The C++ language was chosen for MOOSE because it
provides a rich set of object-oriented constructs without incurring excessive performance
penalties. The MOOSE system provides the same basic simulation primitives as the
commercial tools, and was designed to have a programming interface somewhat resembling
that of MODSIM 11.

The remainder of this paper is organized into five sections and several appendices. Section 2
provides a discussion of issues in simulation methodology and object-oriented programming.
Section 3 contains short descriptions of the tools that we used. Section 4 describes the
benchmark simulations. Section 5 discusses the results of the performance testing. Section 6
provides a summary and concluding remarks. Finally, for each tool, the benchmark source
code has been included in an appendix.

SECTION 2

DESIGN ISSUES

Many of the differences between object-oriented simulation systems can be grouped into three
areas: the modeling approach encouraged by or necessary to use the tools, the degree to which
the features of object-oriented programming are supported, and the interaction of the modeling
considerations with the object-oriented feawres. The following section delineates these issues
in order to form a framework for the discussion of tool featur=s to be found in section 3.

APPROACHES TO MODELING
Event Selection Strategy

Simulation languages have been characterized successfully by event selection strategy as: event
scheduling, activity scanning, and process interaction [Kiviat 71, Fishman 73). Figure 5 in
[Hooper 86] characterizes these strategies in detail. Key consequences of the event selection
strategy include:

. What are the components that the modeler develops?

. How is the state of the simulation components expressed?

. How do the components interact with each other and with the system, i.e., what is
the world view of the component?

Earlier simulation languages developed in the United States implemented the event scheduling
strategy, while the activity scanning strategy gained some popularity in Europe. Many later
simulation languages (and later versions of older simulation languages) have adopted the
process interaction strategy. It is widely recognized that the process interaction strategy results
in a model representation that is “closer to the problem” and thus results in easier and more
straightforward model development.

This correspondence of real-world problem to expression in code has been recognized as one
of the advantages of Object-Oriented Programming (OOP). This is not a coincidence since
much of the early motivation for OOP can be attributed to Simula-67 (which evolved from the
simulation language Simula I) and the evolution of other simulation languages. Thus, it should
not be surprising that all of the object-oriented simulation tools examined in this paper
incorporate the process interaction strategy.

World Views

Certain simulations, such as the bank example described later, differ greatly in design when
written with the different tools, despite the fact that all of the tools share the process interaction
strategy. These differences arise because of biases toward particular design decompositions
(or world-views) that are either supported or required by the tools. In particular, the
identification during the design decomposition of active versus passive components varies
according to the tool used.

Active components are defined as those capable of initiating activities, while passive
components are incapable of initiating activities. Each active component usually has its own
independent time-line, while passive components usually pass time only in a synchrony with
an active component, €.g., a passive resource that is held by an active job. Active components
usually have more complicated behaviors, so code tends to be concentrated in their
representation.

Bezivin [87] has defined two extremes of object-oriented decomposition. In one extreme,
which we will call entity-oriented, the active componerits interact by exchanging messages,
which are the passive components. In the thread-oriented model, the active components may
send messages to the passive components, but not vice-versa. The passive components
mediate the communication between active components, which never communicate directly.
As an example, consider modeling a road traffic simulation problem. The entity-oriented
approach would model the crossroads as objects that send the vehicles as messages between
them. In the thread-oriented approach, the vehicles are the active clients of the crossroads and
make decisions to go from one crossroad to another.

Development of an entity-oriented model generally begins with a decomposition of the system
being modeled into places at which processing is done. These places, also called entities or
nodes, become the active components of the simulation. The events or transactions that
represent the interactions of the entities (the work flowing through them) become the passive
components of the model. Modeling then becomes primarily a process of describing precisely
and correctly the behavior of each of the entities in response to all of the possible sequences of
stimuli, although some consideration must also be given to the information carried by the
events.

In contrast, the development of a thread-oriented model concentrates on the flow of processing
through the system being modeled. Consequently, active components are sometimes called
mobile components, while passive components are called stationary components since they are
used to represent fixed services provided to active components. Once the major processing
threads are identified, the modeling process is primarily one of specifying the processing steps
taken by each of the threads, although the resources or services acquired by the active
component; must also be described.

The distinction between these two approaches may not yet seem significant to some readers.
Indeed, the authors do not know of cases of systems that could not be represented in either of
these world-views. However, there certainly are systems for which one of the approaches is
berter suited than the other. The complexity of behavior of the components of the systems and
the bias of the approaches to providing more powerful constructs for the active components
than for passive components determines the suitability of one approach over the other.
Consider two seemingly similar problems: the road traffic problem introduced above and a
train traffic problem. In the road traffic problem, the driver of the vehicles makes the decisions
as to which route to take, and the designations of vehicles as the active components and the
crossroads as the passive components are most natural. However, in the train traffic problem,
the state of the switches at the intersections determines the route of the train. So, it seems most
natural to specify the switches with active components and represent the trains with passive
components.

The decomposition strategies discussed above are the extremes. In most real-world systems,
the distinction of active and passive components is not as straightforward. In the road traffic
problem above, the presence of traffic lights would certainly affect the outcome of the
simulation. However, the state of the light cannot be said to be an inherent part of the behavior
of the vehicle, indicating that the crossroad should be able to initiate activities such as the
release of vehicles when a light turns green, thus indicating that the cross-roads should also be
an active component. But, since active components cannot interact directly with each other,
alternate methods are usually implemented. Also consider the train traffic problem. To say that
the trains are completely passive ignores the fact that they may break down or otherwise deviate
from their schedules.

There are also systems for which identification of the more active components is not clear-cut.
Delcambre [90] considers an apparel manufacturing operation consisting of a number of
workstations containing specialized equipment, a number of employees that operate the
equipment at the workstations and may be qualified to operate only certain equipment, and job
orders that specify the apparel to be manufactured. The job orders contain the information that
is used to determine the processing steps involved in completing the order. Each step in the
processing requires a workstation with the appropriate equipment and an operator skilled in the
operation of the equipment. First, consider a thread-oriented model of this problem. The job
orders, or perhaps more precisely the jobs themselves, can be the active components since they
specify the threads of processing through the system. The workstations are obviously passive
components that perform services for the active components. The workers, however, cannot
be easily categorized. To the job, they are resources that must be acquired, and so would seem
to be passive components. However, they are active with respect to staffing the workstations
since they are constrained by their qualifications, implement the shop manager's scheduling
policy or determine their own work preferences, take coffee and rest room breaks, and
generally behave in ways that managers abhor. Forcing the developer to model the workers as
strictly active or strictly passive forces an unnatural structure on the simulation and may result
in ungainly artifacts. Attempting to apply an entirely entity-oriented decomposition results in
the same dilemma, even though the assignment of the other components would be the reverse

of that in the thread-oriented decomposition: workstations would be entities sending job-orders
as messages to each other after completing their portion of the job, and workers would still be
problematic.

The consequences of a bias toward a particular world view are significant to the implementer.
As mentioned, more code is generally written for active components, even more than is a
natural consequence of the more complex behavior of the more active components. This code
may also have to include artifacts of simulation such as event scheduling, random distribution
generation, and data collection.

While the bias of a tool toward a particular decomposition strategy may determine the suitability
of the tool for a particular problem, the flexibility of a tool in accommodating a number of
decomposition strategies will determine its usefulness for a broad range of problems. The
tools evaluated differ both in their bias in the world-view that should be used in models
developed and in their flexibility in supporting the different world-views. MODSIM II,
MOOSE, and Smalltalk are thread-oriented, while Sim++ and SES/workbench are entity-
oriented. Each has features that support models of the other world view to varying extents.
MODSIM II provides trigger objects to synchronize two active components. Sim++ events
may contain C++ objects with their own methods. SES/workbench transactions contain an
identifier that other transactions may use to specify synchronization. Smalltalk is unique in that
it is completely object-oriented and open. It can be modified to be entity-oriented. Generally,
tools that are less biased to one extreme are also more flexible.

Other consequences of a bias in world view include limitations on support of object-oriented
development and the ability to support parallel simulation execution. A strong distinction
between passive and active components may weaken the passive component's role as a “first-
class” object in the development process. It may preclude the ability to derive passive objects
by inheritance or otherwise customize the behavior of the passive components. Most attempts
at parallel simulation have adopted the entity-oriented world view, since it seems to resultin a
relatively small number of components of sufficiently large granularity to overwhelm
communication and synchronization overheads.

The event selection strategy and the world view of a tool combine to determine the overall
modeling approach of the tool. As mentioned, all of the tools we investigated incorporate the
process interaction strategy. In all of these tools, the active components are processes. The
simulation primitives available to these processes include many that resemble primitives used in
parallel programming, such as synchronization, interrupt, and delay constructs.

SUPPORT FOR OBJECT ORIENTED DEVELOPMENT

The benefits of object-oriented development have been extensively debated in the literature.
The application of object-oriented development to simulation has not been as extensively
examined, and has generally focussed on the productivity benefits in development [Eldridge
90]. The benefits of object-orientation in the modeling process have recently been examined
[Delcambre 90)].

The tools evaluated here vary widely in their support for object-oriented development. They
also differ greatly in the integration of "programming objects" with the "simulation processes."

Integration of Objects and Simulation Time

Object-oriented development results in a set of partitions of a program’s data space and
execution trace that are called objects. The benefit of the object-oriented paradigm over other
module-based paradigms is that the resulting modules include both data and the code to
manipulate that data together to form abstract data types. One premise of object-oriented
development is that the resulting objects encapsulating the abstract data types are safer and less
likely to be misused, since the modules are more cohesive and their intent is captured
abstractly. Also, the objects are easy to modify as the requirements of the program evolve or
become better refined. The process of design in object-oriented development has as a goal the
delineation of the objects that will be implemented in order to fulfill the requirements of the
program. Object-oriented design often includes a modeling process, where the objects in the
real-world problem are identified and abstracted for representation in code.

Similarly, modeling in the process interaction approach to simulation also includes the
identification of the real-world components of the system being modeled. The identified
components encapsulate the processes, sequences of activities necessary to perform the work
of the system being modeled. Each process contains pieces of the execution trace that
represents the flow of simulation time. Execution will continue within one process as long as
consecutive steps in the processing of the system can occur and jump to other processes when
the next processing step cannot occur in the current process.

While the similarities between the two design processes are obvious, the differences can make
simulation development more difficult. In general, one cannot simply follow one of the
popular object-oriented design techniques and then add the simulation considerations later.
One reason for this is that present object-oriented methods are based on a static semantics, i.e.,
the passage of time is only a side-effect of the execution of the functions and procedures that
act on the objects. Coordination between objects results only from a need of one object to
invoke the processing encapsulated within another. Newer methodologies are starting to
incorporate concurrent semantics, i.e., the notion that there may be several concurrent threads
of execution that must be synchronized at certain points. This is a closer match to the approach
of process-interaction simulation design, in which the coordination of processes is required
only when the processes must synchronize in simulated time.

This interaction of object-oriented design and process-oriented design results in restrictions on
where object boundaries are drawn, on which modules contain the time lines, and how each
object can elapse simulation time. Different consequences were found in each of the tools
examined.

Where are the Boundaries?

The boundaries between objects are shaped not only by the object-oriented decomposition
process but also by where advances in simulation time occur. As an example, consider a
model in which a job must acquire a resource. Since it is presumed that the resource may be
acquired by a number of jobs, the resource has its own flow through simulation time, i.e., it
has its own time-line (at least conceptually; it may be modeled as being atomically attached to
the time-line of its acquirer). Thus, the procedure (or method) that acquires the resource
coordinates across time-lines and the mechanics of the discrete-event semantics must be
invoked. The visibility of these mechanisms differs between the tools examined. Atone
extreme, MODSIM II simply requires that the method for acquiring a resource be designated as
one that may have simulation time side effects. At the other extreme, Sim-++ requires the
explicit passing of an event from one process, the acquirer, to another, the resource. In the
former case, the method for acquiring the resource appears completely as part of the resource.
In the later case, portions of the method appear in two entities. Thus, the boundaries between
objects are drawn differently in the two tools. :

Where are the Time Lines?

The interaction of the simulated time lines with the objects, i.e., the granularity of the domains
in which simulation time is constant, also vary considerably. In most tools, certain objects are
designated to be the simulation-relevant entities, i.¢., the objects that define the simulation time
at which its own methods and the methods of subsidiary objects execute. However, one tool
(MODSIM II) allows each method to have its own time, even within objects. Thus, an object
could be executing each of its methods concurrently in simulation time.

What Entities Can Elapse Simulation Time?

A related consideration, at least in the tools in which there are simulation-relevant entities as
opposed to other entities, is whether the non-relevant entities can cause simulation time to pass,
and if so in what domain. The solutions vary from not allowing objects that are not simulation
entities to pass simulation time (SES/workbench), to allowing non-relevant objects to pass time
for the simulation entity which directly or indirectly invokes the object's method (Sim++), to
allowing each method to affect only its own execution trace (MODSIM II).

Inheritance

Inheritance is the most popular of the mechanisms in object-oriented programming (as
distinguished from merely object-oriented design) that allow related sets of objects to share
common implementations of abstract data and methods and to customize these to produce
slightly different behavior. The ideas of inheritance are borrowed from the classification
methods of biology and other natural sciences. For example, the attributes of an animal include
producing progeny whereas the attributes of a mammal are generally specialized to include live
birth from the mother and require nourishment of the young with secreted milk. The software
program for a hospital may include a class of objects representing rooms, that have attributes
such as length and width and methods such as assignment of a patient. A specialized room
would directly inherit these attributes and methods unless they were over-ridden. For example,
an isolation room would have the inherited attributes of length and width, but would over-ride
the assignment method so that only patients that have been determined to be dangerously
contagious would be assigned to them. The mechanics of specifying the similarities of the
specialized room to any other room and of differentiating the room from others is provided by
the inheritance mechanism of the software development system.

The support for inheritance, or other sharing mechanism, varies within the tools. Some do not
support any sharing mechanism other than the creation of a number of instances of an object,
whereas others provide full support. In some of the tools, inheritance is complicated by the
restriction on drawing boundaries between objects. If we return to the resource example
above, the partition of the "acquire” method across two simulation objects complicates the
derivation of a subclass of the resource class.

Multiple inheritance is a means of specifying derivation of a class of objects from two or more
parent classes. Other than the mechanics of specifying this inheritance, the issues associated
with multiple inheritance include resolution of conflicts when two parents provide methods or
attributes of the same name. Some of the tools examined do not support multiple inheritance,
while those that do differ in the method of conflict resolution.

Strong Types and Object-Orientation

The simulation tools we have investigated fall into four categories with respect to their object-
oriented behavior. Smalltalk is exclusively object-oriented (everything is an object, every piece
of code is a method) and has no typing mechanism for variables. The C++ tools (MOOSE and
Sim++) are object-oriented, but not exclusively (there exist data representations that are not
objects; there are pieces of code that are not methods) and have a strong typing mechanism for
variables. MODSIM II exhibits a subset of the object-oriented functionality of C++.
SES/workbench is actually object-based, since it lacks an inheritance mechanism.

The Smalltalk style of object-oriented programming is perhaps the oldest and most well
known. Smalltalk’s lack of any typing mechanism for variables is most beneficial in the areas
of rapid prototyping and iterative refinement of software. Also, there is little argument about
the elegance of the non-typed object-oriented style: Smalltaik’s semantics are far easier to

understand and work with than any of the other tools studied here. However, a strong typing
mechanism is missed in the areas of program readability and understandability and, as our
benchmarks show quite clearly, performance.

The question is, when a strong typing mechanism is present, is the loss of rapid
programmability and refinability worth the gain in performance. As is demonstrated by our
benchmarks, the performance benefit may be so overwhelming that all other motivations can be
suppressed. This is especially true for large simulations. For smaller simulations, and
especially for simulation prototyping, the performance benefits may not be so overwhelming.
The degree of integration of strong typing into the object-oriented constructs in the C++ and
MODSIM II models may be part of the decision of which tool to choose.

The lack of any typing semantics in Smalltalk means that a Smalltalk variable can refer to any
Smalltalk object. Furthermore, messages are resolved to methods based solely on the type of
the destination object, and this resolution is always done at run time (commonly known as late
binding). This variant of object-oriented semantics makes the implementation of generic
structures, such as collection classes, very easy and natural.

The semantics of the combination of strong typing and object orientedness in MODSIM II
basically involves the limitation of the values of variables to objects having a specific common
ancestor class. A variable of object type X can refer to object Y if and only if the object type of
object Y is a descendent of object type X. There is a single type, called ANYOB]J, to which a
variable can be typed so as to be allowed to refer to any object. Assignments between variables
of type ANYOBJ and variables of any other type are permitted. However, references to an
object’s instance variables and methods cannot be made through a variable of type ANYOBJ.

The purpose of MODSIM II’s strong types seems to be related to the software engineering goal
of program clarity. There is agreement among the authors that MODSIM II does accomplish
this goal very well relative to the other tools investigated here. However, the issues of
performance and ease of programming are not similarly addressed. MODSIM II methods are
all late binding despite the presence of strong typing, so messages are less efficient than
function calls. Also, overriding methods in subclasses is hindered by the requirement that the
signatures of the overriding and overridden methods be identical. This particular rule can
complicate the process of extending the functionality of a class through the formation of
subclasses. One immediate impact is that the object initialization method ObjlInit cannot have
any arguments, making it much less useful than object constructors in Smalltalk and C++.

C++, possibility because of its kinship with C, focuses primarily on how strong types can
increase the performance of object-oriented programs. Unlike both MODSIM II and Smalltalk,
most methods in C++ are early binding, allowing the compiler to translate message sends
directly into function calls without any additional run-time search. Late binding can be
achieved through the use of virtual methods which have a small associated performance

penalty.

10

Unlike MODSIM II, C++ possesses overloading semantics, which allows multiple methods
with the same name and different argument signatures to exist without difficulty. This permits
developers of subclasses to extend the functionality of superclasses by adding and/or changing
arguments when overriding methods. A further advantage of overloading is the ability to
overload most of the operators in C++, including arithmetic and logical operators, comparison
operators, the assignment operator, dereference operators, and the function application
operator.

Assigning between variables of different class types in C++ can be tricky. The actual rule for
such assignments is something like: assignment between variables of different class types is
permitted directly if the type of the source variable (or expression) is a descendent of the type
of the destination variable; assignment in the opposite direction from ancestor to descendent is
possible using casting, but it is only safe if the destination variable type is a leftmost ancestor
(either the first listed parent class, or the first listed parent class of the first listed parent class,
etc.) of the object’s class, or if the destination variable type is a virtual ancestor of the object’s
class. This rule can complicate the task of writing fully reusable methods, especially for
generic structures such as collections. Other rules involving class typed arguments to functions
and methods, and how overloaded calls are resolved, are also complex. In fact, one rule in
C++ that allows a derived class reference (a generalized variable of a descendent class type) to
be implicitly converted to a public base class reference (a generalized variable of an ancestor
class type) allows unsafe assignments to be performed without so much as a warning.

Dynamic Creation of Simulation Objects

Some problems are best modeled with models that require the creation of active simulation
components. Consider a model of a typical multi-user computer system where programs run
within operating system processes on processors. Since processes are created dynamically by
the operating system in response to users or user programs, they cannot be statically created at
initialization and yet are complex enough that they should have their own associated timeline.
Thus, it might be important to the modeler to have the capability to dynamically create
simulation objects.

Two of the tools (Sim++ and SES/workbench) have re.. ions that prohibit the creation of

simulation objects after either development or after an ii:iual phase. Not coincidentally, these
tools are also the ones that are most entity-oriented.

11

SIMULATION CONSTRUCTS
Time Control

It is a tautology to say that time control mechanisms are required for simulation. However,
there have been a wide range of time control mechanisms implemented in different simulation
languages. Much of the difference in these mechanisms is directly attributable to differences in
either the event selection strategy or the world-view supported by the modeling tool. These
considerations have already been discussed.

All of the tools examined provide time control mechanisms that are more than adequate for any
problem which we were able to conceive.

Time control mechanisms differ markedly in their visibility, however. In some tools the
passing of events is explicit, while others hide some events, such as the completion of a hold,
and in others events are never visible.

Preemption

One important time-control mechanism that caused some trouble in earlier simulation languages
is the ability to preempt or interrupt a process after it has started. This capability has a broad
range of applications.

The support for preemption, like other time control issues, is tied up with the other modeling
concerns. The tools have widely different implementation mechanisms.

Pre-Defined Classes

Pre-defined classes can be used to represent parts of the modeled system that conform to the
behavior defined by the class. These pre-defined classes, when they can be used, cut
development time and size. If the extensibility of the tool is restricted, as discussed below, the
pre-defined classes may define the range of applicability of the tool.

All tools that favor the thread-oriented decomposition provide a resource class. A resource is a
depository of a number of tokens that can be acquired, held, and given back either singly or
multiply. An attempt to acquire one or more tokens when the requested number are not
available results in the blocking (in simulation time) of the acquirer.

The tools differ in number and types of pre-defined classes. This is discussed further in the
next section, where we cover the tools individually.

12

Probability Distributions

Random number generation is an important part of most simulations. The tools examined vary
only slightly in the number and types of random distributions provided. We did not undertake
any evaluation of the quality of the generators. During our benchmarking, we did experience a
problem with random number generation in Smalltalk-80. A distribution which should have
returned only positive numbers returned zero on occasion, presumably due to round-off error.

Data Collection

Data collection support includes support for accumulation of statistical data, statistical analysis,
and I/O operations to allow archives. All of the commercial tools examined provide very
similar capabilities. Data collection in MOOSE is not implemented.

EXTENSIBILITY

The history of simulation tools has supported two trends: the extension of an existing general
purpose language to include simulation support, or the creation of a special-purpose simulation
language. The first presumedly provides greater extensibility, while the latter presumedly
provides greater integration and ease of use.

Different problems require different degrees of extensibility. Of the tools examined, three
(Smalltalk, Sim++, MOOSE) are extensions of existing general-purpose languages, while the
others (MODSIM 11, SES/workbench) are simulation-specific developments. Of these, one is
claiming to be robust enough for general purpose use, while the other is extensible through its
own language or through its translation to C.

GRAPHICAL INTERFACES AND ANIMATION

Graphical interfaces are being used in simulation in both the development process and in the
display of results. SES/workbench provides a graphical interface for the development of
models. Instances of pre-defined object types are selected from a palette, positioned within a
window, and connected using Macintosh-like point-and-click methods. Pop-up boxes are
provided for forms that further parameterize the behavior of the model components. The latest
release of SES/workbench also provides animation capability.

MODSIM II provides a library of graphical objects which can be used to animate the results of
the simulation or to present the results in graphs or other presentation graphics.

13

SECTION 3

TOOLS

Our selection of tools was biased by what was already available at our corporation and what we
could acquire for reasonable cost. There are many interesting simulation systems that we did
not consider. For example, SimKit (with KEE) from IntelliCorp provides a wide range of
simulation and expert system capability. Also, other object-oriented programming languages,
such as Eiffel and Simula, have not been considered. LISP, as the base language of ERIC, has
been involved in our study, but only to a limited extent.

In the subsections below, we provide a summary of the capabilities of the commercial products
that we did consider, and then a description of MOOSE.

MODSIM 11

MODSIM 11 is a “general purpose, modular, block-structured high-level programming
language which provides direct support for object-oriented programming and discrete-event
simulation” [Belanger 90a, 90b). CACI Products Company markets MODSIM 1II as the
commercial version of ModSim, which was created on a US Army contract. Modula-2 was the
base language used in the creation of ModSim.

Simulation in MODSIM 1I is thread-oriented. Threads are created by specially designated
methods, called tell methods. A tell method programs the events that will occur in the thread.
Tell methods are asynchronous and cannot return values; when one is called, a new thread is
created and the calling unit continues its execution. Tell methods are also reentrant, meaning
that a new thread can be started while other copies are running. An ask method is the more
traditional method call, in that the calling unit waits until the ask method completes. One of the
limitations of MODSIM 11 is that simulation time can be elapsed only directly inside tell
methods. Thus, if a tell method calls an ask method, that ask method cannot directly execute a
wait statement.

The object-oriented features of MODSIM II are sometimes restricted to agree with the type
structure. In particular, a method can only be overridden by another method taking precisely
the same arguments. Multiple inheritance is supported, and ambiguous references are flagged
as errors.

Code in MODSIM 11 is written in separate main, definition and implementation modules. The
system comes with a smart compilation tool, mscomp, that can build a complete simulation
from a main module, recompiling and linking the appropriate submodules. The compiler for
MODSIM II generates C as output.

15

One of the unique capabilities of MODSIM II is that it supports an interface to CACI’s graphics
package, SIMGRAPHICS. CACI claims that animated simulation demonstrations and
interactive I/O are facilitated by SIMGRAPHICS, but we did not test these features.

SES/WORKBENCH

Scientific and Engineering Software, Inc. (SES), introduced SES/workbench in March of
1989. Workbench is based heavily on queuing theory, having evolved from the earlier
PAWS/GPSM (Performance Analyst’s Workbench System / Graphical Programming of
Simulation Models). Our tests were performed using release 1.11 of Workbench, which was
the most recent version until February 1991, when Release 2.0 became available. Release 2.0
reportedly contains animation capability, which is completely missing from Release 1.

A unique feature of SES/workbench is the graphical front end, SES/design, which allows
specification of a simulation without programming. In SES/design, a simulation is specified as
a hierarchy of directed graphs. Simulation threads are called transactions in Workbench.
Transactions flow along arcs in the directed graph. Nodes in the graphs can manage
transactions, e.g., source nodes, which create transactions, or manage resources, €.g., allocate
nodes, where a transaction queues for a resource. A small set of standard predefined nodes is
supplied, together with a user node that must be coded by the userin C. The eventsin a
transaction are not directly programmed, but arise as the transaction traverses the graph. For
this reason, we view Workbench as entity-oriented. Transactions, however, do play an
important role in Workbench. Mechanisms exist for naming transactions and interrupting them
at arbitrary points in their execution.

The graphs created by SES/design are stored as ASCII files. These files are compiled by
Workbench into a simulation language, SES/sim. This language is a superset of C, containing
extensions that were influenced by PAWS and by C++. Users can program directly in the
simulation language, if they desire. For our benchmarks, we used the graphical interface. Our
main complaint is the difficulty of debugging. Errors in the graph file are usually not
discovered until the simulation language is compiled into C. The generated error messages
refer to line numbers in the machine-generated simulation language file. This leaves the user
with the problem of trying to trace an error back to an arc or node in the graphical input. Some
improvements to debugging are claimed by SES for Release 2.0.

Object-orientation is not an emphasized part of Workbench. The SES/sim language does
contain constructs for specifying classes and creating instances, similar to C++. The SES/sim
manual lists only very basic facilities for object-orientation. In particular, there appears to be
no provision for declaring base classes or member functions to be public or private, no
friendship mechanism, no operator overloading — in short, most of the more elaborate
constructs of C++ are not present. The object-oriented features that do exist are more likely to
be used by the SES tool than by the simulation designer.

16

Sim+ +

Sim++ is a C++ library of simulation constructs produced by Jade Simulations International
Corporation of Calgary, Canada. The unique feature of Sim++ is support for parallel
execution using the TimeWarp Distributed run-time system. The later versions of Sim++
require Release 2.0 of ATT C++, which the user licenses separately. Jade recommends 8
nodes as the minimum reasonable parallel configuration. Networks of Sun -3 or 4
workstations, the BBN Butterfly, and the Meiko Computing Surface transputer array are the
supported hardware. The Distributed run-time environment provides deterministic execution
despite being distributed. A number of tools are provided to increase execution speed-up.
Sim++ also provides an Optimized Sequential run-time executive for developing, debugging,
and executing simulations on a single machine. The optimization removes most of the
execution overhead associated with parallel execution.

The results in the following sections were obtained by using Release 3.0 of Sim++ on a single
workstation using the Optimized Sequential run-time system. While it might be expected that
the emphasis on performance of the sequential executive is not as great as that for the
distributed executive, and that the benchmark results for Sim++ might suffer as a result, we did
not use the distributed executive for several reasons. First, we did not have it. Second, the
single-feature benchmarks would not have benefitted from parallel execution. Finally, the
characterization of the performance of parallel systems is more complicated in general and was
felt to be beyond the resources available.

The Sim++ simulation approach is entity-oriented. A static set of simulation entities is created
for each simulation run from sub-classes of the Sim++—provided sim_entity class. These
sim_entity sub-classes define the behavior of the entities in response to receiving (or failing to
receive) events. Events passed between entities are derived from the sim_event class that
includes an integer field for event typing and a pointer to allow inclusion of a body containing
state information in the event. While an event body may be any C++ object, there is no
enforcement of consistency between the integer event type and the supplied event body. This
consideration and the lack of a mechanism to directly tie event types to entity methods tends to
limit the usefulness of inheritance to defining components of entities and events rather than
whole entities or events.

Preemption is supported by a Hold_For construct that is interrupted by either any event or an
event that passes a selection criterion. Selection criteria include any combination of event
originator, event type, or contents. While this construct may not be as readable as the interrupt
mechanism in MODSIM 11, it may be more flexible.

While there is no pre-built support for resources, resource and consumer classes were built
fairly simply for the fourth single-feature benchmark described in the following section. These
classes used the Hold_For construct. Events requesting a resource were deferred while a
resource was held by another requestor. After release, the next requesting event is selected
from the system-managed deferred event queue.

17

While no explicit support for graphical input or animation was provided, the multiple
inheritance feature of the C++ base of Sim++ allows easy extension by integration with other
libraries.

SMALLTALK-80

Smalltalk is a general-purpose, object-oriented programming language. For our tests, we used
Smalltalk-80, a product of ParcPlace Systems. We had access to Release 2.5 on Macintosh
hardware, and Release 4 (the successor to 2.5) on Sun workstations. A collection of
simulation constructs for Smalitalk is described in the Smalltalk “blue book™ [Goldberg 83] and
is implemented in Smalltalk-80. The constructs encourage the thread-oriented approach, but
the entity-oriented approach can also be used. There is a useful and general approach to
passive and active resources. No provision is made for interrupts, but this was easily fixed.
One of the main advantages of Smalltalk is the open nature of the system, with full source code
visible to the user. For simulation, the event queue mechanisms can be examined and changed,
if desired. In the browser tool, we were able to add interrupt mechanisms to the simulation
constructs. The new constructs merged seamlessly into the existing ones.

There are three possible problem areas in Smalltalk. The first, and most important, is the
performance problem. As a rough rule of thumb for general computing, Smalltalk is about one
order of magnitude slower than optimized C [Chambers 89]. Doyle’s data confirms this rule
for a simulation benchmark [Doyle 90}, and our timing studies show similar results. For
simulations where performance is not a critical factor, Smalltalk may be a very good choice.
The second potential problem is the lack of multiple inheritance. There was at one time an
experimental implementation of multiple inheritance in Smalltalk-80 [Borning xx], but it was
climinated after version 2.3. Currently, only single inheritance is supported in Smalltalk-80.
The third potential problem is the Smalitalk learning curve. The programming language and
environment for Smalltalk-80 form a uniquely powerful system. The time required to become
proficient in Smalltalk-80 is undoubtedly longer than that for MODSIM II or SES/workbench.
The investment in learning time pays off in increased capability.

A PROTOTYPE C++ SIMULATION LIBRARY -- MOOSE

MOOSE is a C++ implementation of the process model of discrete simulation. This model is
most similar to the MODSIM II model, where each TELL method execution is a process.
However, unlike MODSIM 11, simulation processes are first class objects. Like MODSIM 11,
MOOSE supports dynamic creation of processes.

The programmer interface to MOOSE was designed to be similar in nature to that of
MODSIM II because of the authors’ familiarity with that tool, and because of MODSIM II’s

ease of programmability.

18

The majority of functionality within MOOSE is provided by class Process. The simulation
programmer is expected to provide subclasses of class Process, each with its own definition
for the start() virtual function member, and its own set of constructors. The arguments to a
process are provided through the constructors, and are stored within data members of the
process object. The start() member function is called by the process scheduler to initiate the
process. MOOSE provides several scheduling primitives that can be called from anywhere
within a process’ execution.

Processes in MOOSE can be created dynamically, and are expected to have varying lifetimes.
The memory consumed by a MOOSE process is reclaimed when the process terminates. The
MOOSE programmer is protected against dangling references to processes that have been
garbage collected after termination by the use of a safe referencing scheme implemented by the
process identifier (PID) class.

MOOSE is implemented using only portable C++ functionality. The process class is
implemented using the setjmp and longjmp functions (from the standard C include file
setymp.h) to create coroutines on the execution stack. Such an implementation of processes can
run in any C++ environment. However, the use of virtual memory machines is strongly
recommended for simulations of any significant size because the setjmp/longjmp coroutining
technique uses large amounts of address space (the system allocates 4K bytes by default for
each process’ stack), even though the amount of virtual memory actually used may be low
(many processes use only a small portion of their stack).

The MOOSE event list used for scheduling processes has a tightly coded heapsort-based
priority queue implementation. This implementaticn was found to be slightly faster on both
Sun-3s and Sun-4s than several alternatives in the O(NlogN) category, such as splay trees and
leftist trees. The heapsort algorithm is array-based, and requires that the heap array be
allocated statically. However, the heap array is reallocated (using the realloc function) as
needed. The additional complexity of the reallocation of the heap array, including the check for
overflow prior to every insertion, did not prevent the heapsort-based implementation from
running faster than the others tested (see the results of the Test 1 benchmark).

The process scheduling primitives in MOOSE, including process waiting and interrupts,
together with the fact that MOOSE processes are directly accessible, have been shown to be
sufficient for the implementation of many diverse simulation constructs, including resources
and triggers.

ERIC

ERIC is an object-oriented simulation tool designed and developed at Rome Labs [Hilton
1990]. Initially, ERIC stood for Enhanced ROSS in Common LISP, but as ERIC was
developed, it diverged from ROSS (a simulation tool from RAND Corporation) and the name
is no longer considered ar. acronym. Compared to the cther tools that we considered, ERIC is
unique in that it is event-driven. We completed our first four benchmarks for ERIC, but the

19

fifth benchmark and the bank simulation require a notion of interrupt. We could find no simple
way to model interrupts in ERIC, due to its event-driven nature, and hence we did not complete
the last two benchmarks for this system. For our tests, we used a version of ERIC in Allegro
Common Lisp with the Common Lisp Object System (CLOS).

20

SECTION 4
BENCHMARKS

The design of performance benchmarks for object-oriented systems seems to be an uncharted
area. For simulation systems, Doyle [Doyle 90] studied several tools using a single
benchmark. We have chosen five feature-specific benchmarks, and a single general purpose
benchmark. The benchmarks were implemented and timed in each of the tested tools.

SINGLE FEATURE BENCHMARKS

These are small benchmarks designed to test single features of the simulation tool. Each is
parameterized by a single integer input usually representing the number of threads generated
(test 5 is the exception; the integer parameter in that test represents the number of interrupts
generated). The results are graphed and discussed in the next section. Abstractly, a thread is a
sequence of causally related events operating on the same state infoimation. Exactly how a
“thread” is implemented is different for the different simulation tools. In the transaction-based
simulation models, a thread corresponds tec a transaction. In the process-based simulation
models, a thread corresponds to a process. Within a thread, at most one event can occur at any
simulation time.

Test 1 - Sorting Threads

Initially, N threads are created. Each thread is given a starting simulation time chosen from a
uniformly distributed random variable. The threads simply terminate as soon as they are
started. The system must sort and execute the threads. Asymptotic performance on this test
ranges from nearly linear for MOOSE to quadratic on some of the commercial tools. Also, for
Sim++ and ERIC, two tests were performed to illustrate the difference in performance when
each thread is associated with a different object and when all threads are associated with the
same object. In both Sim++ and ERIC, the event list sorting algorithm's asymptotic
performance is better for the case when each thread is associated with a different object.

This thread sorting test is expected to predict the relative performance of the simulation tools on
simulations containing a large number of threads. Had all of the tools used similar sorting
procedures, the test would not be an accurate predictor. However, because of the quadratic
behavior of some of the sorting algorithms, the simulation systems with nearly linear behavior
(actually, O[NlogN] complexity) are clearly favored for large simulations over those with
quadratic behavior.

21

Test 2 - Thread Creation

This test is designed to compare the overhead involved in creating and manipulating individual
threads (all for the same simulation object) without the overhead associated with thread sorting
measured in test 1. For this test, a single thread is initially created which spawns a child thread
and then terminates. The child thread then spawns a third generation thread and terminates,
and so on until N threads have been generated. At any time, there is at most one thread waiting
to execute, so the overhead of sorting is not incurred.

Differences between the semantics of threads in the tools compared should be noted when
examining the results of this test. Those simulation tools that have process semantics for
threads (Smalltalk, MOOSE, MODSIM II) are trading overhead as measured in this test for
power within a process, which in most cases would translate to fewer thread creations in these
tools for given simulation than for the non-process oriented tools (Sim++ and
SES/workbench). MODSIM 11 is actually somewhat of a hybrid between the process and non-
process models, since threads in MODSIM II can only elapse simulation time from within their
outermost stack frame.

Test 3 - Synchronous Thread Creation

Modularity issues arise in simulation languages just as they do in standard programming
languages. The software engineering ideal for modularity is that there should be a negligible
tradeoff of performance for modularity inherent in the language. This, however, is difficult to
test, since the notion of modularity is not nearly as formalizable and measurable as is
performance. This test is an attempt to show that the implementation of some simulation
systems encourages a “demodularization” of code exceeding that normally experienced in
standard programming languages.

In standard programming languages, the most common unit of modularization is the function
(procedures and methods are here considered synonymous with functions). Small, easy to
understand functions that encapsulate simple ideas are preferred for modularity, readability,
maintainability, and nearly every other software engineering concern. It is generally accepted
that code which localizes concepts is to be preferred. The largest drawback of function
modularity is the added overhead of the extra function calls, but this is not a severe
performance penalty in most programming languages. For one of the simulation systems
investigated here, however, function modularity within threads can impact performance
considerably. The problem occurs in MODSIM II, when a single thread must pass through
several functions, any of which may or may not elapse simulation time. In all other tools, any
function (or function equivalent, such as a subgraph in SES/workbench or method in
MODSIM II or MOOSE) may elapse simulation time within a thread. It is possible to spawn a
new thread that is synchronously tied to its parent (the parent will sleep until the child is done,
then the parent will continue), but this is not necessary. In MODSIM I, however, it is

22

necessary to spawn a synchronous child thread using the WAIT FOR construct to permit the
called method to elapse simulation time. This benchmark is designed to demonstrate the impact
on performance that this restriction can have.!

In test 3, a simulation thread synchronously calls a child function. This behavior is continued
to a depth equal to the input parameter. In test 3a, the function calls do not elapse simulation
time. In test 3b, each call elapses one unit of simulation time. In both cases, we have coded
the test in a manner that would not prohibit the child from elapsing simulation time (which
means that a WAIT FOR construct is used in MODSIM II, while direct function calls are used
in all other tools).

Test 4 - Resource Queues

Resources are one of the most common constructs found in simulation systems. Resources are
generally represented as queues with some standard queuing discipline (usually FIFO) and
some number of tokens. Threads can request some of the tokens from a resource. If the
resource has sufficient tokens to fulfill the request, the thread is allowed to continue. If the
resource has too few tokens to fulfill the request, then the requesting thread is queued and its
execution is blocked. Threads then can release tokens back to resources, which may cause the
resources to dequeue waiting threads and allow them to continue executing.

Of the simulation systems tested, all but Sim++ and ERIC contain some built in resource
construct with semantics equivalent to that described above. For both Sim++ and ERIC,
resources are implemented as separate simulation objects that use event rescheduling to achieve
the desired queuing and waiting semantics.

For this resource test, a resource containing single token is created, and N threads request the
resource. Care has been taken to construct this test so that at most one thread at any time is
scheduled by thread sorting (as tested in test 1), so that the overhead of the sorting algorithm is
not felt. Performance was generally linear here, except for MODSIM 11, which exhibited
quadratic performance. We have since sent CACI our code for this test. They profiled it to
find the performance problem areas and report that Release 1.6 of MODSIM will include
improvements.

Test § - Interrupts

Interrupts, like resources, are common to most simulation systems. Interrupts present a
semantics for the control of threads by other threads. The target thread of an interrupt is
always in a wait state, since this the only way that the source thread can have time to initiate the
interrupt. The source thread of the interrupt can interrupt the target using some construct that
requires a way of denoting the target thread (in MODSIM I, where threads are not

! Subsequent to our work, CACI has apparently corrected this problem in Release 1.7 with the
introduction of WAIT FOR methods. When WAIT FOR methods are invoked by a WAIT
FOR construct, no context switch occurs.

23

independently namable entities, a thread is denoted by the host object and the method name -
this technique may not always indicate a unique thread). The target thread of the interrupt is
scheduled to execute immediately after the interrupt (or, at least before any simulation time
elapses), and control within the thread is usually transferred to some interrupt handler.

Of the simulation systems tested, all but Sim++, Smalltalk, and ERIC contain a built in
interrupt facility. For Smalltalk, an interrupt mechanism was added simply by adding the
appropriate methods to some of the built in simulation classes. For Sim++ and ERIC, an event
rescheduling feature was used to obtain the interrupt semaniics.

For this test, a source thread and a target thread are created. The source thread will interrupt
the target thread N times, each time while the target thread is waiting within a delay construct.
The interrupt handler for the target thread simply re-invokes the delay, causing the target thread
to wait for the next interrupt. For this test, all tools showed similar performance.

BANK SIMULATION BENCHMARK

The bank simulation is our revision and enlargement of an example supplied with MODSIM 11.
The purpose of this benchmark is to test many simulation system features together within the
context of a “typical” simulation. The simulation consists of “customers” and “VIPs” that enter
a simulation of a bank, requiring service. There are a fixed number of identical servers
("tellers") in the system. When a customer enters the simulation, it selects a server with the
shortest queue. When a VIP enters, it selects a server at random and attempts to receive
immediate service. If the teller chosen by a VIP is serving a non-VIP customer, the customer
is interrupted and the VIP is served; if the server is serving another VIP, the requesting VIP
simply departs the system in disgust. The servicing of a customer interrupted by a VIP is
resumed after the VIP has been serviced.

24

Entrance

by .'i\\
iy :i
by

iy iy

2 X
'}
I i1 %

330 330 330 230 30

3= 3523] veen
1A

Typical customer path

Tellers(n) \\ /
Exit

Typical VIP path

Figure 1. Bank Simulation Sketch

To make the simulation a bit more interesting, while a customer is in a queue, it may “time-out”

and be required to visit the lavatory. A lavatory has a number of stalls. Customers visit the

lavatory appropriate to their gender and use the first available open stall. After the lavatory visit

is complete, the customer again selects a teller with the shortest queue. Furthermore, every
customer has a “lavatory line length tolerance” — if the line to the lavatory exceeds this
tolerance, the customer will leave the bank and seek "alternate facilities,” rather than wait on
line. The bank thus has an implicit saturation point, past which a higher rate of arrival of
customers will result only in the excess customers leaving the bank. However, the complex
interaction of customers, VIPs, and visits to the lavatory makes any analytic determination of

the saturation point non-trivial.

The generic benchmark was coded and successfully run on all systems except MODSIM IL
Under Release 1.5 of MODSIM II, we experienced run-time errors related to the interrupt
constructs. We reported the error and received a beta version of Release 1.6 under which the

simulation runs correctly.

25

SECTION 5§

TIMING RESULTS

TEST 1

The timing results for Test 1 are shown in figure 2 below. Since the benchmark tests the
sorting algorithm implemented by the run-time environment of the simulation tools, asymptotic
behavior of O(n log n) was expected. Surprisingly, most of the tools exhibited quadratic
behavior. The exceptions are MOOSE and Sim++ (when the threads are scheduled for distinct
entities). Not as surprisingly, Smalltalk performed significantly worse than any of the other
tools.

Note that the "N queues” result for Sim++ was measured as the difference between two
separate tests so that the overhead of creating entities could be removed. The cost of creating
entities was significantly more than the cost of creating threads.

The inability to run the SES/workbench benchmark for more then 6,000 iterations is
unexplained. Our implementation simply never terminated at this input level. The lack of data
past 7,000 iterations of the Sim++ (N queues) implementation reflects the point at which the
physical memory of the workstation used was exhausted. After that point the effects of paging
could not be separated and the data was discarded.

The authors speculate that the tools are optimized for simulations where the number of events
on the queue is not large and, therefore, the constant multiplier may be a greater consideration
than the order of the sorting algorithm used. Also, we do not know if using uniformly
distributed event times is a suitable approximation to the function of typical simulations, where
event times may appear in an almost sorted order.

TEST 2

Figures 3 and 4 show the results of this benchmark. Once again Smalltalk took much more
time to perform the same number of iterations as any of the other tools. In fact, the Smalltalk
results are removed from figure 4 so that the relative differences of the other tools could be
shown clearly. As expected, the cost of creating a thread is roughly linear in the number of
threads created.

27

Seconds x100
7 =

Smailtalk

SiM++

1 qQueue
(19)MODSIM N

£ 4
L[]
»
-
e

/. ERIC
¢ (1 queus)

ERIC
(N queues)
.‘ d ‘ B "
SiM++
(N queuss)
MOOSE

1] L -

1]
4 5 6 7 8 9 10

Iterations x1000
Figure 2. Test 1 Performance

28

S¢condt
140

Smamalk

60
40

Sitls 4
SES/Workbonch
Moosg
MODSIM [}

5

7

ltonﬂons X1000

Figure 3, Test 2 Pcrfonnancc

29

Seconds
16 =
T SiM++

14 -

12 4

10 1*-

SES/Workbench
OOSE MODSIM 1

0 + 3 | |

1

0 2 4 6 8 10
Iterations x1000

Figure 4. Test 2 Performance (no Smalltalk-80 or ERIC)

30

TEST 3

The results of benchmarks 3a and 3b are shown in figures S and 6, respectively.

MODSIM II is the only tool where a module must be both coded and called in a particular
fashion, as a TELL method, if it might elapse simulation time. As the results of Test 3a show,
there is a substantial performance penalty for calling a TELL method, using the WAIT FOR
construct, even when the method does not elapse simulation time. The shape of the curve
suggests that the quadratic sorting algorithm is invoked, as expected from Test 1.

Not surprisingly, the performance was best in the C++-based tools MOOSE and Sim++; the
overhead introduced is that of a method invocation. Similarly, the Smalltalk implementation
introduced a method invocation overhead which, while substantially more than that of the C++-
based tools, was modest. The SES/workbench technique of invoking a subgraph was
substantially slower than even the Smalltalk method invocation.

For all of the tools, the difference between Test 3a and Test 3b should have been measured by
Test 2. This seems to be the case for all but Smalltalk, a result that is unexplained.

TEST 4

The results of this benchmark are shown in Figures 7 and 8. The results of the Smalltalk and
MODSIM II runs have been omitted from figure 8 in order to better show the data for the
others.

The overhead of acquiring a resource should be low. The implementation of a resource in the
Sim++ code shows the relatively simple operations needed and that a user can easily implement
resources with a cost that is a small multiple of the cost of creating a thread. The nonlinear
results of MODSIM II and Smalltalk are unexplained.

TEST §
Figure 9 shows the results of this benchmark. Interrupts should incur an overhead equal to a

small multiple of the cost of creating a thread. This expectation seems to be met by each of the
tools.

31

Seconds

180

160

140

120

100

80

60

40

20

T MODSIM II
-ﬁ e
-4
SES/Workbench
T Smalitalk
/
:|_==-.:/'7 ERIC
[T — 1 i | P— [E R ' C
T { ' MOOSE
0 2 4 6 8 10

Iterations x1000

Figure 5. Test 3a Performance

32

SQconds
250

200

150

100

Smalltalk

SESIWorkbonch

5

6
mntlons X1000

Figure g, Test 3p Pexfom)ance

33

SiMy .

—\-m,oss

10

Seconds x100

40 - Smalltalk

35 4

30 +

25 4.
MODSIM I

15

10 -~ ERIC

SES/Workbench

fterations x1000

Figure 7. Test 4 Performance

34

Seconds
140 —0

120 <-

100 <4~

80 -+

60 <4

SES/Workbench
40 =
20 -
0 —t
1 2 3 4 5 6 7 8 9 10

iterations x1000

Figure 8. Test 4 Performance (Smalltalk-80, MODSIM II, and ERIC are omitted)

35

MOOSE

SiM++

Seconds

120 -
’.

Smaliitasx
100 &

Moosg
MODSIM I/
SF'S/Workbcnch
0 "E:-'-—-,E—-‘: L 1 { 1 i 1]
T ¥ 1 1 1 ! T] 1 1
1 2 3 4 5 6 7 8 9 10
lteratlons X1000

Figure 9. Test 5 Performance

36

BANK SIMULATION BENCHMARK

The results of the bank simulation benchmark are shown in figure 10. Two versions of this
test were performed: one where the customer arrival rate closely matches the service times,
yielding a system operating at its saturation point; in the second, the customer arrival rate
exceeds the service capacity considerably, yielding a system operation well above its saturation
point. The operation of the bank simulation is such that the queues never grow too long
(customers leave to go to the restrooms, and leave the simulation entirely if the restroom lines
are too long), so the difference in performance between the two versions of the test for each
tool is not likely to be due to the queueing algorithms. Instead, the difference reflects the fact
that each tool spends more of its time creating customer objects (threads) in the over saturated
version than in the saturated version. For all tools except Sim++, thread creation is more
expensive than other processing.

The overall results of the bank simulation test show that the relative performance of the tools on
realistic simulation problems is predicted rather well by their relative performance on the single
feature benchmarks.

Seconds
250-F

200 +

150 4

100 +

50 -

0 4 S @4 i i TR

SES MOOSE SIM++ MODSIM 11 Smalitalk

B over saturated Esaturated

Figure 10. Bank simulation Performance

37

SECTION 6
SUMMARY AND CONCLUDING REMARKS

Our survey found a wide variety of features and performance in object-oriented simulation
tools. On the performance side, Smalltalk represents one extreme, paying major penalties for
making decisions at run time. At the other extreme is our hand-coded MOOSE, which excels at
most of the benchmarks. Our benchmarking effort has generally reinforced the rule of thumb
that Smalltalk code runs about one order of magnitude slower than comparable optimized C
code. For the other systems that compile into C, we found SES/workbench to be surprisingly
efficient, while MODSIM II and, to a lesser extent, Sim-++ were not as efficient.

It is important to emphasize that performance is only one facet of the evaluation of a simulation
tool. In some contexts, the time and effort required to create the simulation code may be more
critical than the code’s execution time. While we are confident that our benchmarking effort
provides clear performance distinctions, we feel less confident drawing conclusions concerning
the time it takes to develop a simulation in a particular tool, or the time required to maintain or
upgrade an existing simulation. These issues tend to depend on complex human factors.
Some individuals my find the graphical interface of SES/workbench to be a large advantage,
while others may feel that it is a hindrance in that it restricts access to the simulation code. The
Smalltalk-80 language and programming environment provide a powerful collection of tools,
but novice users will certainly be very bewildered during initial attempts to assimilate the
system.

To consider the issue of programming languages in general, it is clear that C++ currently has a
number of advantages: it is enjoying widespread popularity, with high quality and either public
domain or low cost implementations available for an assortment of hardware platforms.
Libraries of reusable classes for C++ are growing in number, and support for simulation is
available from several sources. Environments that support C++ program development are
becoming more widely used. The language has significant momentum and this is an important
consideration when choosing a programming language.

The three commercial simulation tools are similar in their high licensing costs and their promise
to provide users with support. In most other areas, these commercial tools are quite different.
Let us start with MODSIM 1I. This tool has made a substantial amount of progress since its
introduction. New features, such as compilation of circular references and WAIT FOR
methods, have been introduced as users have identified problems. In addition, CACI has
received preliminary benchmark information from us, and they have worked on the latest
release of their system to improve their performance numbers. The basic simulation style of
MODSIM 11 seems to be successful; we chose to exchange definitions of the bank simulation
problem in MODSIM 1I code. The graphics support provided by CACI is certainly a positive
feature. On the negative side, we have seen that the performance of MODSIM 1I is

39

disappointing. In terms of features, there are still a few things missing, for instance,
overloading of method names. The decision to separate methods into ASK and TELL variants,
and the subsequent addition of WAIT FOR methods, may not be the best path; a single type of
method was adopted for MOOSE.

SES/workbench was included in this study since it is a tool currently available at MITRE and it
makes some claims towards being object-oriented. In truth, the typical user interaction with
this tool will involve none of the features of object-oriented programming. The support for
object-oriented programming in the programming language SES/sim does not extend into the
graphical interface. The clear focus in this product is extended queueing networks, and this is
an important and very useful paradigm. SES has informed us that they are interested in
working on a new tool that would be more object-oriented, but no details have been
established. The performance of SES/workbench was impressive, especially given that the
code was generated from graphic input.

Sim++ is a system specifically focused on parallel execution of simulations as a means of
greatly improving performance. Our tests used only sequential Sim-++, partly because the
parallel version was not available to us, and partly because performance evaluation of parallel
processing is outside the scope of what we could accomplish in this evaluation task. From the
coding of the bank simulation, it seems fair to say that Sim++ was the most difficult of our five
primary systems to develop code in. This is due to that fact that the design methodology
enforces an approach that facilitates parallel execution, but puts somewhat of an extra burden
on the programmer. The performance of Sim++ on the bank simulation was fairly good; it
appears that the performance penalty created by the focus on parallel execution is less than the
design penalty. Clearly, the utility of Sim++ must be based on how successful it is at
generating speed up when running in parallel. This would be an interesting topic for another
performance study.

To conclude, as we began this project, we found little existing work in performance analysis
for object-oriented systems. Our efforts have provided a start in this area. For simulation
tools, we developed a small set of feature benchmarks. These benchmarks are certainly not
exhaustive, and more work is necessary to assemble a complete approach to such benchmarks.
Our single larger benchmark was of a rather simple system. It would be interesting to look at a
more complex simulation. We believe it likely the performance characteristics of the tools
would remain the same in a larger benchmark. One of the advantages of doing a larger
benchmark would be to get more information on program development time.

40

LIST OF REFERENCES

Agre, J. R., and P. A.Tinker, January 1991, “Useful Extensions to a Time Warp Simulation
System,” Proceedmgs of the 1991 SCS Conference on Parallel and Distributed Simulation,
Anaheim, CA, pages 78-85.

Bézivin, J., October 1987, “Some Experiments in Object-Oriented Simulation,” Proceedings of
OOPSLA 87, Kissimee, FL, pages 394405.

Belanger, R., December 1990, “MODSIM II — A Modular, Object-Oriented Language,”
Proceedings of the 1990 Winter Simulation Conference, New Orleans, pages 118-122.

Belanger, R., B. Donovan, K. Morse, and D. Rockower, 1990, MODSIM II, The Language
for Object-oriented Programming: Reference Manual, La Jolla, CA: CACI Products Company.

Bensley, E. H,, V. T. Giddings, J. I. Leivent, and R. J. Watro, January 1992,
“A Performance-based Comparison of Object-oriented Simulation Tools,” Proceedings of
Object Oriented Simulation 1992, Newport Beach, CA, pages 47-51.

Borning, A. H,, and Ingalls, D. H. H., 1982, Multiple inheritance in Smalltalk-80,
Proceedings of AAAI, 1982, Pittsburg, PA, pp. 234-237.

Chambers, C., D. Ungar, and E. Lee, October 1989, “An Efficient Implementation of Self, a
Dynamically-typed Object-oriented Language Based on Prototypes, Proceedings of OOPSLA
89, New Orleans, LA, pages 49-70.

Delcambre, L. M. L., S. P. Landry, L. Pollacia, and J. Waramahaputi, January 1990,
“Specifying Object Flow in an Object-Oriented Database for Simulation”, Object Oriented
Simulation: Proceedings of the SCS Multiconference on Object Oriented Simulation, San
Diego, CA., pages 75-80.

Doyle, R. J., January 1990, “Object-oriented Simulation Programming”, 1990 SCS
Conference on Object Oriented Simulation, pages 1- 6.

Eldredge, D. L., J. D. McGregor, and M. K. Summers, February 1990, “Applying the
Object-oriented Paradigm to Discrete Event Simulations Using the C++ Language”,
Simulation, pages 83-91.

Fishman, G. S., 1973, Concepts and Methods in Discrete Event Simulation, New York:
John Wiley and Sons.

Goldberg, A., and D. Robson, 1983, Smalltalk-80: The Language and its Implementation,
Reading, MA: Addison-Wesley.

41

Herring, C., January 1990, “ModSim: A New Object-oriented Simulation Language”, 1990
SCS Conference on Object Oriented Simulation, pages 55-60.

Hilton, M. L., and J. D. Grimshaw, April 1990, ERIC Manual, RADC-TR-90-84.

Hooper, J. W., April 1986, “Strategy-Related Characteristics of Discrete-Event Languages and
Models”, Simulation, vol. 46, no. 4, pages 153-159.

Iacobovici, S., and C. Ng, August 1987, “VLSI and System Performance Modeling”, IEEE
Micro, pages 59-72.

Jade Simulations International, 1990, Sim++ Programmer Reference Manual, Release 3.0,
Calgary, Canada: Jade Inc.

Kiviat, P. J., 1971, “Simulation Languages,” Computer Simulation Experiments With Models
of Economic Systems, (T. H. Naylor, ed.) New York, NY: John Wiley and Sons,
pages 406—489.

Lippman, S. B., 1991, C++ Primer, 2nd editon, Reading, MA: Addison-Wesley.
Lomow, G., and D. Baezner, December 1990, “A Tutorial Introduction to Object-Oriented
Simulation and Sim++,” Proceedings of the 1990 Winter Simulation Conference,

New Orleans, pages 149-153.

Schwetman, H. D., December 1990, “Introduction to Process-Oriented Simulation and
CSIM,” Proceedings of the 1990 Winter Simulation Conference, New Orleans, pages
154-157.

Scientific and Engineering Software, Inc, April 1989, SES/workbench: Introductory
Overview, Release 1.0, Austin, TX: SES, Inc.

Stroustrup, B., 1991, The C++ Programming Language, 2nd Edition, Reading, MA:
Addison-Wesley.

42

APPENDIX A

. MODSIM II CODE

MAIN MODULE Testl;

FROM UtilMod IMPORT GetCmdLineArg;
FROM SimMod IMPORT StartSimulation, SimTime;
FROM RandMod IMPORT RandomObj;

TYPE
Foo = OBJECT
TELL METHOD Bar ():
END OBJECT;

OBJECT Foo;
TELL METHOD Bar ();
BEGIN
END METHOD;

END OBJECT;

VAR

: Foo;
i, 3 : INTEGER;
8 : STRING;

: RandomObj;

NEW(f):

NEW({(r);
GetCmdLineArg(l, s);
{ := STRTOINT(s);
FOR jJ := 1 TO 1§

TELL £ TO Bar() IN ASK r UniformReal (0.0,

StartSimulation();
END MODULE.

MAIN MODULE Test2;

FROM UtilMod IMPORT GetCmdLineArg;
FROM SimMod IMPORT StartSimulation, SimTime;
FROM RandMod IMPORT RandomObj;

TYPE
Foo = OBJECT
TELL METHOD Bar (IN n : INTEGER);
END OBJECT;

f : Foo;

i, 3 : INTEGER;
: STRING;

: RandomObj;

LR

OBJECT Foo;
TELL METHOD Bar (IN n : INTEGER);
BEGIN

NEW(f);

NEW(r) ;

GetCmdLineArg({l, s);

i1 := STRTOINT(s):

TELL £ TO Bar(i);

StartSimulation{();
END MODULE.

MAIN MODULE Test3a;

FROM UtilMod IMPORT GetCmdLineArg;
FROM SimMod IMPORT StartSimulation, SimTime;
FROM RandMod IMPORT RandomObj;

Foo = OBJECT
TELL METHOD Bar (IN n : INTEGER);
END OBJECT;

VAR

Foo;

J : INTEGER;
¢ STRING;

¢ RandomObj;

£
i
s
4

C3JECT Fooy;
TELL METHOD Bar (IN n : INTEGER);
BEGIN

0
OR f TO Bar(n)

NEW(f);

NEW(r);

GetCmdLineArg(l, s);

i := STRTOINT(s);

TELL f TO Bar(i);

StartSimulation():
END MODULE.

MAIN MODULE Test3b;

FROM UtilMod IMPORT GetCmdLineArg;
FROM SimMod IMPORT StartSimulation, SimTime;
FROM RandMod IMPORT RandomObj;

Foo = OBJECT
TELL METHOD Bar (IN n : INTEGER);
END OBJECT;

OBJECT Foo;
TELL METHOD Bar (IN n : INTEGER);
BEGIN
WAIT DURATION 1.0 END WAIT;
nt=n-1;
IFn>0
WAIT FOR f TO Bar(n)
END WAIT;
END IF;
END METHOD;
END OBJECT;

NEW(f);
NEW(r);
GetCmdLineArg(l, s);

1 := STRTOINT(s);

TELL £ TO Bar(i);

SstartSimulation();
END MODULE.

MAIN MODULE Test4;

FROM Ut{lMod IMPORT GetCmdLineArg;
FROM ResMod IMPORT ResourceObj;
FROM SimMod IMPORT StartSimulation, SimTime;

TYPE

CustomerObj = OBJECT
TELL METHOD Run(IN n : INTEGER);
END OBJECT;

VAR

Cust : CustomerObj;
: ResourceObj;

I : INTEGER;

str : STRING;

OBJECT CustomerObj;
TELL METHOD Run{IN n : INTEGER);
BEGIN
IFn>1
TELL SELF TO Runin - 1) IN 1.0;
END IF;
WAIT FOR Res TO Give(SELF,1);
END WAIT;
WAIT DURATION 1000000.0
END WAIT;
ASK Res TO TakeBack (SELF,1);
END METHOD;
END OBJECT;

BEGIN
NEW {Cuat};
NEW(Res);
ASK Res TO Create(l);
GetCmdLineArg(l, Str);
I := STRTOINT(SLr);
TELL Cust TO Run(I});
StartSimulation;

END MODULE.

MAIN MODULE TestS5;

FROM UtilMod IMPORT GetCmdLineArg;
FROM SimMod IMPORT StartSimulation, SimTime,
Interrupt;

TYPE
Foo = OBJECT
TELL METHOD LongDelayloop (IN I: INTEGER);
TELL METHOD Interruptloop (IN J: INTEGER);
END OBJECT;
OBJECT Foo;

TELL METHOD LongDelayLoop (IN I: INTEGER);
BEGIN
{OUTPUT {("LongDelayloop started®);}
WAIT DURATION 100.0
ON INTERRUPT
{OUTPUT (*LongDelay interrupted®);}
IF I > 0 TELL SELF TO LongDelayloop(l - 1};
END IF;
END WAIT;
{OUTPUT {"LongDelayLoop finished");}
END METHOD;

TELL METHOD Interruptloop (IN J: INTEGER);
BEGIN
{OUTPUT (*Interrupter started®);}

Pl

WAIT DURATION 1.0

END WAIT;

IF J > 0 Interrupt (SELF, *LongDelayloop®);
TELL SELF TO InterruptLoop(J - 1);

END IF;

{OUTPUT (*Interrupter finished®);j

END METHOD;

END OBJECT;

VAR
b4 : Foo;
Num : INTEGER;
Str : STRING;

BEGIN
NEW(f);
GetCmdLineArg(l, Str);
Num := STRTOINT (Str);
TELL f TO LongDelayLoop (Num);
TELL £ TO InterruptLoop (Num);
StartSimulation();

END MODULE.

MAIN MODULE Sim;

FROM SimMod IMPORT StartSimulation, SimTime,
Interrupt, TriggerObj;

FROM ResMod IMPORT ResourceObl;

FROM RandMod IMPORT RandomObj;

FROM MathMod IMPORT LN;

FROM UtilMod IMPORT ClockTimeSecs;

TYPE
Gender = (Female, Male);

CustomerObj = OBJECT; FORWARD;
VIPOb} = OBJ_CT; FORWARD;

LineObj = OBJECT (ResourceOb])

serving : CustomerObj;

canContinue : TriggerObj;
TELL METHOD ServeCust (IN cust :
CustomerObj) ;
OVERRIDE
ASK METHOD ObjInit ();

END OBJECT;

RestRoom = ResourceObj;

CustomerObj = OBJECT

myGender : Gender;

ASK METHOD ObjInit ();

TELL METHOD GetOnlLine (};

TELL METHOD VisitFacilities ();

PRIVATE

ASK METHOD FindBes-.Line () : LineObj;
END OBJECT;

EndSim = OBJECT
TELL METHOD Stop ()7
END OBJECT;

VIPObj = OBJECT (CustomerObj}
OVERRIDE
TELL METHOD GetOnline (};
END OBJECT;

CustGeneratorObj = OBJECT
TELL METHOD GenCustomers ()7
END OBJECT;

VIPGeneratorObj = OBJECT (CustGeneratorObij)
OVERRIDE
TELL METHOD GenCustomers ();
END OBJECT;

MoreRandomObj ~ OBJECT (RandomOb3)
{ add the Erlang distrubution }
ASK METHOD Erlang (IN mean, variance :
REAL

REAL) : H
END OBJECT;

hoursToRun,

meaninterArriveTime,
meanvIPInterArriveTime,
meanNatureCallsTime,
varianceNatureCallsTime,
meanlineTolerance,
variancelineTolerance,
meanServiceTime,
varianceServiceTime : REAL;

k : INTEGER;

numLines : INTEGER;

line : LineObj;

alllines : ARRAY INTEGER OF LineObj;
random : MoreRandomObij;

restRooms : ARRAY Gender OF RestRoom;
restRoomMeanTime,

restRoomVarTime : ARRAY Gender OF REAL;
custGenerator : CustGeneratorObj;
vipGenerator : VIPGeneratorObj;
seed : INTEGER;

endsim : EndSim;

OBJECT CustomerObj;
ASK METHOD ObjInit ();
BEGIN
myGender := VAL(Gender, ASK random
UniformInt (0, 1));
TELL SELF TO GetOnline;
END METHOD;

TELL METHOD GetOnlLine {();
VAR

myLine : LineObj;
timeTillNatureCalls : REAL;
BEGIN
LOOP

timeTillNatureCalls := ASK
random

Erlang{meanNatureCallsTime,

varianceNatureCallsTime);
myLine := ASK SELF TO
FindBeatLine () ;
WAIT FOR myLine TO
TimedGive (SELF, 1, timeTillNatureCalls)
EXIT;
ON INTERRUPT
WAIT FOR SELF TO
visitFacilities
END WAIT;
END WAIT;
END LOOP;
WAIT FOR myLine TO ServeCust (SELF)
END WAIT;
ASK myLine TO TakeBack {SELF, 1);
EXIT;
END LOOP;
DISPOSE (SELF) ;
END METHOD;

TELL METHOD VisitFacilities ();
VAR
restRoom : RestRoom;
restRoomLineTolerance : INTEGER;
BEGIN
restRoom := restRooms(myGender];
restRoomLineTolerance := ROUND (ASK random

45

Erlang(meanLineTolerance,

variancelineTolerance));
IF ASK restRoom TO ReportNumberPending() >
restRoomLineTolerance
DISPOSE (SELF) ;
TERMINATE;
ELSE
WAIT FOR restRoom TO Give (SELF, 1)
END WAIT;
WAIT DURATION ASK random
Erlang (restRoomMeanTime [myGender],

restRoomVarTime (myGender])
END WAIT;
ASK restRoom TO TakeBack (SELF, 1);
END IF;
END METHOD;

ASK METHOD FindBestLine () : LineObj;
VAR
line, bestlLine : LineObj;
length, bestlLength, i : INTEGER;
BEGIN
bestLength := MAX (INTEGER);
FOR i := 1 TO numLines
line := alllines({i];
length := ASK line TO
ReportNumberPending () ;
IF ASK line TO ReportAvailability() = 0
length := length + 1;
END IF;
IF length < bestLength
bestLength := length;
bestLine := line;
END IF;
END FOR;
RETURN bestLine;
END METHOD;
END OBJECT;

OBJECT VIPObj;
TELL METHOD GetOnLine {();
VAR
line : LineObj;
o0ldCust : CustomerObj;
BEGIN
line := alllines{ASK random Uniformint(l,
numLines)];
oldCust := ASK line serving;
IF oldCust <> NIILOBJ
IF ISANCESTOR(VIPOb3, oldCust)
RETURN;
END IF;
Interrupt (1ine, *"ServeCust®);
ELSE
WAIT FOR line TO Give(SELF, 1)
END WAIT;
END IF;
WAIT FOR line TO ServeCust (SELF)
END WAIT;
IF oldCust <> NILOBJ
WAIT FOR line,canContinue TO Trigger()
END WAIT;
ELSE
ASK line TO TakeBack (SELF, 1);
END IF;
DISPOSE (SELF) ;
END METHOD;
END OBJECT;

OBJECT MoreRandomObj;

ASK METHOD Erlang (IN mean, varlance : REAL) :
REAL;

Vi

k : INTEGER;
i : INTEGER;
prod : REAL;
BEGIN
k := ROUND(mean * mean / variance);

IF k <= 0
QUTPUT (*Bad parameters to Erlang.*);
HALT;

END IF;

prod := 1.0;
FOR 1 := 1 TO k
prod := prod * ASK SELF UniformReal (0.0,

END FOR;
RETURN ~LN (prod)
END METHOD;
END OBJECT;

OBJECT LineObj;
ASK METHOD ObjInit ();
BEGIN
INHERITED Obilnit;
NEW (canCont inue) ;
END METHOD;

1.0);
* mean / FLOAT (k);

TELL METHOD ServeCust (IN cust :
VAR

CustomerObi) ;

svcTime : REAL;
startTime : REAL;
BEGIN
svcTime := ASK random
Erlang %n&rvicel‘ime, varianceServiceTime) ;
P

startTime := SimTime();

serving := cust;

IF svcTime <= 0.0

EXIT;

END IF;

WAIT DURATION svcTime
serving := NILOBJ;
EXIT;

ON INTERRUPT

svcTime := svcTime - (SimTime ()
- startTime);

WAIT FOR canContinue TO Fire()
EXIT;
ON INTERRUPT
END WAIT;
END LOOP;
END WAIT;
END LOOP;
END METHOD;
END OBJECT;

OBJECT CustGeneratorObj;
TELL METHOD GenCustomers{);

VAR
customer : CustomerObj;
waitTime : REAL;

BEGIN
LOOP

wailtTime := ASK random
Exponent ial (meanInterArriveTime) ;

WAIT DURATION waitTime;

END WAIT;

NEW (customer) ;

OBJECT VIPGeneratorOb};
TELL METHOD GenCustomers({);
VAR
vip : VIPOb};
waitTime : REAL;
BEGIN
IF meanVIPInterArriveTime > 0.0

waitTime := ASK random
Exponent 1al (meanVIPInterArriveTime);
WAIT DURATION waitTime;

END WAIT;
NEW (vip);
END LOOP;
END IF;
END METHCD; { GenCustomers |}

46

END OBJECT;

OBJECT EndSim;
TELL METHOD Stop (};
BEGIN
HALT () ;
END METHOD;
END OBJECT;

BEGIN
{NEW (dt}); }
{TELL dt TO TimeOut () IN 1.0;}
NEW (restRooms, Female .. Male);
NEW {rest Rooms (Female]) ;
ASK restRooms{Female}] TO Create(4);
NEW {restRocoms [Male]);
ASK restRooms[Male] TO Create(4);
NEW (restRoomMeanTime, Female .. Male);
NEW (restRoomVarTime, Female .. Male);
restRoomMeanTime (Female] :=~ 5.0;
restRoomMeanTime [Male] := 3.0;
restRoomVarTime[Female] :~ 8.0;
restRoomVarTime(Male] := 6.0;
OUTPUT (*MODSIM II Simulation ‘Lines and Rest
' starting—-%);
OUTPUT (*What is the mean custamer interarrival
time in minutes?*);

INPUT {meanInterArriveTime);

QUTPUT (*What is the mean VIP interarrival time in
minutes?");

INPUT (meanViPInterArriveTime);

OUTPUT (*What is the mean service time in
minutes?*);

INPUT (meanServiceTime);

OUTPUT (*What 1s the variance of the service
time?%);

INPUT (varianceServiceTime);

OUTPUT (*What is the mean time in minutes till
*Nature Calls‘'?");

INPUT (meanNat ureCallsTime);

OUTPUT (*What is the variance?*);

INPUT (varianceNatureCallsTime) ;

OUTPUT {(*What is the mean restroom line length
tolerance?®);

INPUT (meanLineTolerance) ;

OUTPUT (*What is the variance?");

INPUT (variancelineTolerance) ;

OUTPUT ("How many lines are there?%);

INPUT (numLines) ;

OUTPUT ("How many hours should the simulation
run?*);

INPUT (hoursToRun) ;

OUTPUT (*Random Seed?");

INPUT (seed) ;

Rooms

OUTPUT ("Mean Interarrive Time: “,
meanInterArriveTime);

QUTPUT {*Mean VIP Interarrive Time: *,
meanVIPInterArriveTime) ;

QUTPUT ("Mean Service Time: ", meanServiceTime);

OUTPUT (*Variance Service Time: *“,
varianceServiceTime);

OUTPUT ("Mean ‘Nature Calls*' Time: *,
meanNatureCallsTime);

OUTPUT ("Variance ‘Nature Calls* Time: *,
varianceNatureCallsTime);

OUTPUT {("Mean line length tolerance: ",
meanlineTolerance);

OUTPUT (*Variance line length tolerance: *,
variancelineTolerance);

OUTPUT ("Number of lines: ", numlLines);

OUTPUT ("Hours to run: *, hoursToRun);

NEW{allLines, 1 .. numlLines);

FOR k := 1 TO numLines

NEW{line);
ASK line TO Create(l};
alllines{k] := line;

END FOR;

NEW (random) ;

ASK random TO SetSeed (seed);

NEW {custGenerator);

NEW {vipGenerator);

NEW {endsim);
TELL custGenerator TO GenCustomers();
TELL vipGenerator TO GenCustomers();
TELL endsim TO Stop IN 60.0 * hoursToRun;
StartSimulation;

END MODULE.

47

APPENDIX B
SES/workbench CODE
On the following three pages, we have reproduces screen images of the directed graphs that
represent the top level of the benchmarks in SES/workbench. Given the previous descriptions

of the benchmarks, these graphs should provide enough detail to understand how the
benchmarks were realized in the SES tool.

49

Sts/design

SES/design 2.0
[Index Jj What |

begin_node vait_here end_node

SES/design 2.0
[Index Jl What |} How

phase = counter + 1

J
DA “{-{)/ phase = ::ounbar <} phase = counter E

begin_node 1ooq)or splitter end_node
Y

¢

i

sts/design

E x m H SES/design 2.0

phase = counter + 1

—‘—“@

unit_delay

| .~

'P_L phase = counter —<E % phase = 0 E

begin_node looper fork_all join_all end_node

Figure 11. SES/workbench Graphs
50

sts/desiygn

SES/desiqn 2.0 RIS
[index) vhat | Eov_ [

token_pool
- LA >-]
begin_node grab_one end_node

StS/desiygn

SES/design 2.0 TS coscs |
[Trdex] vhat)| Fiov JREEEEESREBEN 5o inary |

sLoop sPause intr

Figure 11. (continued)
51

Sts/des iyn

SES/design 2.0 o dale

enter_pot inc_num_v

<

potty_sink return_from_potty dec rum v

¢ Sis/design

R oin |
=k2le) [Index]| _Hov | it 1ol | main sin mod |

2z R

Reference cust_resume
to potty_mod
9 nature_delay nature_inrpt

L % —-Z] timer_sink

set_gender
O P <l] , 1, I "), T e
Cust_Gen timer_splt get_short_line Reference dec_l_len
to teller

P e O D\
¢ s alloc_t teller rel t
[2]

t_not_avail
VIP_Gen vip_sink

Figure 11. (concluded)
52

APPENDIX C

Sim++ CODE

//1//1// Testl.c -- testl (1 queue)
#include «<sim++.h>
#include <stdlib.h>

// message types
enum (INIT, GO, STOP);

// receiver entity class
class foo : public sim_entity {
public:
foo(sim_event &ev);
void body();
void bar(}):
}:

foo:: foo(sim_event &ev)

// initialize the entity
)

void foo::body()
{

sim_event ev;

sim _wait(ev);

while (ev.type() i= STOP) (
bar():
sim wait(ev);

}
void foo::bar() (
)

// instantiate entity class
SIM_ENTITY (foo) ;

// id for entity instantiation
sim entity_id foo_iq;

// source entity class
class source : public sim_entity (
public:
source(sim_event &ev);
void body();
private:
int n;
}:

source: :source(sim_event &ev)

{
// get the number of iterations
SIM_GET(int, n, ev);

)

void source: :body ()
{

// Put n events on queue.
int seed = 12345;

double time;

while (n--)

{
time = sim_ uniform(1.0, 1000.0, seed);
sim_schedule(foo_id, time, GO);
}

// Schedule the stopping ev
sim_schedule{ foo_id, 1001. 0, S’IDP);
}

// instantiate entity class

53

SIM_ENTITY (source) ;

// id for entity instantiation
sim _entity_id source_id;

// create and initialize entities
1(roid sim_initialize(int, char *argv([), int, char*[])

int n = atoi(argvil]);
char *foo_name = "foo_entity";
char *source_name = *source_entity”®;

// create one instance of source class with ID
source_id and name

// source_name

source_id = sim _create{*source®,source_nhame,
INIT, SIM_PUT(int, n));

// create one instance of foo class with 1D
foo_id and name foo_name
foo_id = sim create("foo®, foo_name, INIT):;

/1/11/1/17/1/ testib.c -- test 1 (n queues)
////7/1/17// note: must subtract the results
[///7/117177/ testic in order to remove the
///17/17/1/77/ the overhead of creating
//11/1/11// n entities

tinclude <sim++.h>

#include <stdlib.h>

#define MAX_ENTITIES 10000

// message types
enun { INIT, GO, STOP};

// receiver entity class
class foo : public sim entity ({
public:
foo(sim _event &ev);
void body();
void bar();
}:

foo::foo(sim_event &ev)

(
// initialize the entity
}

void foo::body ()}
{

sim_event ev;

sim wait(ev);

while (ev.type() != STOP) {
bar():
sim wait(ev);

)

void foo::bar()

}

// instantiate entity class
SIM_ENTITY (foo);

// 14 for entity instantiation
sim entity_id foo_id[MAX_ENTITIES]:

struct sizes |
int m;
int n;

|}

// source entity class
class source : public sim entity {
public:
source(sim event &ev);
void body ()}
private:
sizes size;
1 H

source: :source(sim_event gev)

{
// get the number of iterations
SIM _GET (sizes, size, ev);

}

int seed = 12345;

void source: :body ()
{

// Put n events on queue

double time;

for (int n_events = size.n; n_events > 0;
n_events--} {

for { int m entities = size.m; m_entities > 0;
m entities~-) {
time = sim uniform(1.0, 1000.0, seed);
’ sim_schedule (foo_id[m_entities], time, GO):
}

}

// instantiate entity class
SIM_ENTITY (source);

// 1d for entity instantiation
sim_entity id source_iad;

// create and initialize entities
Yoid sim_initialize(int, char *argv(], int, char*(])
sizes size;
size.m = atol(argv(l});
size.n = atoi(argv(2));
char foo_name[10];
char *source name = “socurce_entity®;

// create one instance of source class with name
source_entity

sim create (“source",source_name, INIT,
SIM PUT[sizes, size));

// create *"m* instances of foo class with name
foo_"i*
for (int 1 = 1; i <= size.m; 1++) |
sprintf{(foo_name, “foo_%d*, 1);
foo_id[i]) = sim_create{ “foo", foo_name, INIT);

}

//17///// teatlc.c -~ testl (n queues)
///7/7/7/// note: schedules no events,
///////7// used to measure the overhead
///7//77// of creating n entitles
#include <sim++.h>

#include <stdlib.h>

f#define MAX_ENTITIES 10000

// message types
enum { INIT, GO, STOP);
// receiver entity class
class foo : public sim entity {
puklic:
foo(sim_event &ev);

void body();
void bar():

foo::foo(sim event sev)

{
// initlalize the entity
}

vold foo::body ()
{

sim event ev;
sim wait(ev);
while (ev.type()
bar();
sim wait (ev);
}

I= STOP } {

}
vold foo::bar{) {
}

// instantiate entity class
SIM ENTITY (foo) ;

// id for entity instantiation
sim entity_id foo id{MAX_ENTITIES};

// source entity class
class source : public sim entity {
public:
source(sim _event &ev);
void body();
1H

source: :source(sim event &ev)
)

void source: :body ()

{

}

// instantlate entity class
SIM ENTITY (source);

// id for entity instantiation
sim_entity_id source_id;

// create and initialize entities
void sim initialize(int, char *argv(], int, char*(]}
{
int m = atoi (argv(l});
int n = atoi (axrgv(2]);
char foo_name(10];
char *source_name = “gource_entity*;

// create one instance of source class with name
source_entity
sim_create (*source", source_hame, INIT);

// create *m" instances of foo class with name
foo_“i"
for (int 1 = 1; § <=m; i++) {
sprintf(foo_name, “foo_%d*, 1i);
foo_id(1] = sim _create{ “foo", foo_name, INIT);

}

///7/// test2.c
#include <sim++.h>
#include <stdlib.h>

// message types
enum { INIT, GO, STOP};

// id for entity instantiation
sim_entity_id foo_id;

54

// receiver entity class
class foo : public sim entity {
public:
foo(sim_event gsev);
void body();
private:
int n;

foo::foo(sim_event &ev)

// initialize the entity
SIM_GET(int, n, ev);
}

void foo::body ()
{

sim event ev;
while (--n)

{
// schedule an event for yourself
sim_schedule(foo id, 0.0, GO);
7/ and wait for it
sim wait (ev);
}
}

// instantiate entity class
SIM_ENTITY (foo);

// create and initialize entities
vold sim_initialize(int argc, char *argv(], int,
char*[}])
{
int n = atoi(argv(l]):
char *foo_name = “foo_entity";

// create one instance of class foo with ID
foo_id and name foo_name

foo_id = sim_create(“foo*, foo_name, INIT,
SIM PUT(int, n));

}

////// testla.c
#include <sim++ . h>
#include <stdlib.h>

// message types
enum { INIT, GO, STOP};

// 1d for entity instantiation
sim_entity id foo_id;

// recelver entity class
class foo : public sim entity {
public:
foo(sim_event ¢ev);
void body ();
void bar(int);
private:
int n;
1}

foo::foo(sim_event sev)

SIM_GET(int, n, ev);

void foo::body ()

bar (n);
}

void foo::bar(int n) |
/*sim_printf(~bar: %d \n", n};*/
If (~=n == 0) {
sim_event ev;
sim_time new_time = sim_hold(1.0, ev);
}
else

35

bar(n);

}

// instantiate entity class
SIM ENTITY {foo);

// create and initialize entities
void sim_initlalize(int, char *argv{]}, int, char*{])
{

int n = atol(argv{l]);
char *foo_name = “foo_entity®;

// create one instance of class foo id ID foo_id
and name foo_name

foo_id = sim _create(*"foo®, foo name, INIT,
SIM_PUT(int, n)};

}

///// test3b.c
#include <sim++.h>
#include <stdlib.h>

// message types
enum { INIT, GO, STOP};

// id for entity instantiation
sim entity_ id foo_id;

// receiver entity class
class foo : public sim entity {
public:
foo(sim_event &ev);
void body(};
void bar(int);
private:
int n;
1H

foo::foo(sim_event &ev)

SIM GET(int, n, ev);

void foo::body ()

bar (n);

void foo::bar(int n) {
sim event ev;
if {--n > 0) {
sim_time new_time = sim hold{(1.0, ev);
bar(n);
}
}

// instantiate entity class
SIM_ENTITY (foo) ;

// create and initialize entities
void sim_initialize(int, char *argv(], int, char*[])

{
int n = atoi(argv(l});
char *foo_name = “foo_entity";

// create one instance of class foo id ID foo_id
and name foo_name

foo_id = sim create("foo", foo_name, INIT,
SIM_PUT{ int, n));

}

JI71110E0020017777707/17/7777// resources.h
#include <sim++.h>

// resource entity superclass
class resources : public sim entity {
publie:
// message types
enum { INIT, GIVE, GIVE_ACK, TAKE_BACK, DESTROY};
// initialize an instance
resources{ sim _event &ev);
// simple behaviour
vold body():
sim_event next_give_or destroy():;
sim event next take back _or_destroy (sim_entity id
from) ;
1}

// customer entity class
class consumers {
public:

vold acquire_resource(sim entity id
&the_resource);

void give back_resource(sim entity_id
&the_resource);

void destroy_resource{ sim entity_id
&the_resource);

’

1111747777777 /7//7/7/// consumers.c
f#include *"resources.h*;

vold consumers::acquire resource(sim entity id
&the_resource}

const sim type_p got_it(resources:
sim_event ev;
sim_event id event_id;

:GIVE_ACK) ;

event_id = sim schedule(the_resource,
resources: :GIVE};
sim walt_for(got_it, ev);
}

vold consumers::give_back_resource(sim entity_id
&the_resource)
{

0.0,

sim_event ev;
sim event_id event_id = sim_schedule(the_resource,
0.0,

}

resources: :TAKE_BACK) ;

void consumers::destroy_resource(sim_entity_id
&the_resource)

{

sim_event id event_id = sim_schedule(the_resource,
0.0

’ resources: :DESTROY) ;
}
//1/7111171/7117//1///// resources.c
#include “resources.h®;

resources: :resources{ sim_event &ev)
{ // no need to initialize further
}

sim_event resources::next_give_or_destroy ()
{
const sim_type_p give or destroy p(GIVE, DESTROY);
sim_event event received
// Try to select a deferred event that matches
int bool = sim_select (SIM ANY, event_received);
if (bool == 0) |
// no deferred events, walt for next GIVE or
DESTROY
sim wait_for(give_or destroy p,
event received),

}
else { // check that deferred event is a GIVE or
DESTROY
if ((event received.type() != GIVE) &é
{event received.type() != DESTROY)){
sim error(“Unexpected event type: %d recelved
in resource ¥s®,
event_recelved.type(}, sim_name};

56

}
]
return event_received;
}

sim_event
resources: :next _take back_or_destroy(sim _entity_id
from)
{

const sim type p take_back_or destroy p(TAKE_BACK,
DESTROY}) ;

sim_event event_received;

sim wait_for(take back_or destroy p,
event received),
1f7(event _received.type() == TAKE_BACK) {
if (event_received.scheduled by () != from) {
sim_error (“Entity other than consumer has
given back resource $s \n",
sim _name());
}
I

return event_received;
}

void resources::body ()

sim_event next_event;
sim entity id resource requestor;

next_event = next_give_or destroy();
while (next_event. Ttype() == GIVE) {
// DESTROY Tesults in termination

resource_requestor = next event.scheduled by(};
// give the resource to the requestor
sim_schedule(resource requestor, 0.0,
GIVE ACK),
// wait for a request to give it back from the
requestor
next _event =
next_take_| Eéck or_destroy (resource_requestor);
if {next”_event.type() != DESTROY) |
next_event = next_give_or_destroy();
}

//////testd.c
#include */home/vtg/sim++/reusable/resources.h®;
#include <stdlib.h>;

// message types
enum { INIT, GO, STOP};

// instantiate the class
SIM_ENTITY (resources};

// handle for the one instance
sim_entity id resource_id;

// customer entity class
class customer : public sim_entity, public consumers {
sim_time starting delay;
public:
customer{ sim_event &ev);
void body ()
13

customer::customer { sim event &ev)
// initialize the entity
SIM GET(sim_time, starting delay, ev);
}

vold customer::body()

{

sim event ev;

sim_hold for{ starting delay, SIM _NONE, ev);
acquire Tresource(resource id);

sim_hold for(1000000.0, SIM_NONE, ev);
give_back_resource(resource_id);

}

// instantiate entity class
SIM_ENTITY (customer);

// create and initialize entities
void sim_initialize(int, char *argv(}, int, char*+)
{

int n = atoi(argv(l]);

char *res_name = “resource_entity®;

char *customer_name = “"customer entity“;

// create one instance of resource class with ID

resource_id and name

// resource_name

resource_id = sim_create(“resources*,res_name,
resources::INIT);

// create n instances of customer class with name

customer_ %i
for (int 4 = 1; 1 <= n; {++) {
sprintf(customer name, “customer_ %d*,
sim _time start delay =-1;
sim _create(“customer*, customer name, INIT,
“SIM | PUT(sim_time, start delay)),

1);

//7/// testS.c
#include <sim++.h>
#include <stdlib.h>

// message types
enum { INIT, INTERRUPT, STOP};

// 1d for entity instantiation
sim entity id foo_id;

// receiver entity class
class foo : public sim entity {
public:
foo(sim_event gev);
void body ();
void tripper();
void trippee();
private:
int trips;
1H

foo::foo(sim_event &ev)

SIM GET(int, trips, ev);

vold foo::body ()
{
trippee();
}

void foo::tripper() ({
sim_schedule(sim current (), 1.0, INTERRUPT);
}

vold foo::trippee()

i
const sim_type_p interrupt (INTERRUPT);
sim event ev;
while (0 < trips--)

{

// set the time out timer

tripper();

// wait for a long time (anticlpating interrupt)
sim_hold_for{(100.0, interrupt, ev);

}

57

}

// instantiate entity class
SIM_ENTITY (foo) ;

// create and initialize entities
vold sim_initialize(int, char *argv(], int, char*[])
{

int n = atoi(argv(l]);

char *foo_name = "foo_entity*;

// create one instance of class foo id ID foo_id
and name foo_name

foo_id = sim_create("foo"”, foo_name, INIT,
SIM PUT(“int, n))7

}

Sim++ BANK SIMULATION DESCRIPTION

The bank simulation in Sim++ is the most complex of our benchmarks, and we include hcre
some discuss before we list the source code. Figure 12 summarizes the event flows between
entities in the simulation. Event flows are labelled with corresponding event identifiers. The
termination of event flows are labelled with the method(s) invoked by the receiving entity's
body method. The summary entity, the initialization event flows, and the report event flows
are not shown in the figure. Not all methods are shown.

ServiceVip or
TurnAwayVip

CHECKLINE_EV
CheckLineLength

or
RestroomEntity)

(waited for)

CustomerTimeout

TIMEOUT_EV
RestroomEntity
(2)

HandleUnoccupy

UNOCCUPY_EV
Figure 12. Major Entities and Event Flows

58

Six entity classes are used in the program:

1.

CustomerGenerator: An instance of this class generated customers with a negative
exponential interarrival time. The customer’s gender and ID were assigned at this
time. The customer is sent to the line determined by the customer's BestLine method.

VipGenerator: An instance of this class generated VIPs with a negative exponential
interarrival time. The VIP's ID was assigned and the VIP was sent to a randomly-
determined teller.

LineEntity: One instance of this class was associated with each teller. This entity
class modeled the line in which the customers waited until a teller was busy or until
their "restroom tolerance" was exceeded. In addition to the required constructor and
body methods, the following additional methods were defined:

a) PendingNumber: This method determined the line length.
b) CheckLineLength: This method replied to a query for the length of a line.

¢) WaitingCustomer: This method handled the arrival of a customer on line. If the
line were empty and the teller were free, the customer would be sent to the teller
for service. Otherwise, the customer would be enqueued and the customer's
ArrivedOnLine method would be invoked to schedule a timeout for its restroom
break.

d) CustomerTimeout: This method handled the occurrence of a restroom time for a
customer. The customer was dequeued and sent to the restroom appropriate to
the customer’s gender.

e) TellerBusy: This method handled an event that indicated that a line's teller was
busy.

f) TellerFree: Conversely, this method handled the event that indicated that a
line's teller was free. If any customers were in line, the head of the line was
removed, the customer’s LeavingLine method was invoked in order to cancel
the corresponding restroom timeout event, and the customer was sent to the
line.

g) UpdateStats: This method was invoked when the length of the line was
changed so that the time-averaged line length could be accumulated.

h) WriteReport: This method reported the accumulated line length statistics to the
summary entity for consolidation and printing.

59

TellerEntity: Instances of this class were created to model the bank's tellers. In
addition to the constructor and body methods, five methods were defined:

a) GetNextEvent: This method informs the corresponding line that the teller is free
and waits for the arrival of a customer or VIP.

b) ServiceCustomer: This method determines the service time of a customer
according to an Erlang distribution and attempts to service the customer for that
time. This service may be interrupted by the arrival of a VIP, at which time the
ServiceVip method is invoked. After return from this method, the teller
attempts to give the customer the remaining service time that it needs. Service
time data for the customers is accumulated.

¢) ServiceVip: This method determines the service time required by a VIP
according to an Erlang distribution and attempts to service the VIP for that time.
If interrupted by the arrival of another VIP, the TurnAwayVip method is
invoked. After interruption, service is resumed. Service time statistics are
accumulated.

d) TurnAwayVip: This method refuses service to VIPs that attempt to interrupt the
service of other VIPs. A count of the number of VIPs turned away is
accumulated.

e) WriteReport: This method reports the accumulated statistics to the summary
entity.

RestroomEntity: An instance of the restroom entity class modeled the restroom for
each gender. Each restroom is a single-queue multi-server. The methods defined in
addition to the constructor and body methods are:

a) PendingNumber: This method was reported the line length.

b) HandleRestroom: This method handled the arrival of a customer. If there was
no queue and a stall was free, the stall would be marked busy and the service
time for the customer would be determined according to an Erlang distribution.
A corresponding completion event would be scheduled. Otherwise, the line
length would be checked against the customer's line length tolerance. If this
tolerance was exceeded, the customer would exit the bank. A count of these
customers was accumulated. If the tolerance were not exceeded, the customer
would be enqueued.

¢) HandleUnoccupy: This method handled the completion event for a customer.

The customer is sent to the line entity with the best line length as determined by
the customer's BestLine method. The corresponding stall is marked free. If

60

6.

there are customers enqueued, the head of the queue is removed, the stall is
marked occupied, and a completion event is scheduled according the service
time determined by an Erlang distribution.

d) UpdateStats: This method was called when the line length changed in order to
accumulate the line length averaged over time.

€) WriteReport: This method reports the accumulated statistics to the summary
entity.

Summary: One instance of this entity class was used to consolidate and print the
statistical information for the simulation run.

Twelve event types were defined:

0.

INIT_EV. This identifier was used for all "initialization events" sent to each entity
during the Sim++ initialization phase. "Init" object classes were defined for each of
the entity classes that contained the data values necessary to identify or customize
each entity instance. Objects of the appropriate "init" class were included in each
event sent by the sim_initialize method to each created entity.

CHECKLINE_EV. This event requcsted that the receiving line entity report its line
lIength to the sendmg generator entity. The body of these events were null.

LINELENGTH_EV. In response, a line entity would include an int value in an
event with this identifier.

CUSTOMER_EV. Customers were sent between entities in events with this
identifier. The body of these events contained an instance of the Cust/D class.

TIMEOUT _EV. When arriving on line, a customer would send an event with this
identifier to the corresponding line entity that would arrive at the entity if the
customer’s "restroom tolerance” were exceeded. The body of these events contained
a copy of the Cust/D generating the event.

VIP_EV. The arrival of a VIP was indicated by the receipt of an event with this
identifier. The body of the event would contain an object of the VipID class.
UNOCCUPY_EV. The RestroomEntity entities scheduled events with this identifier
to indicate the time when service for a customer would be completed. The bodies of
these events contained the customer objects.

BUSY _EV. The TellerEntity entities sent events with this identifier to their
corresponding LineEntity entities to indicate that they were busy servicing a customer

61

10.

11.

ora VIP. This event was necessary because the arrival of VIP at an otherwise free
teller should block the normal customer from arriving. The body of these events
were empty.

FREE_EV. Conversely, this event indicates to a LineEntity that the corresponding
TellerEntity is free and that the next customer, when available, should be sent to the
teller.

REPORT _EV. Events with this identifier were used by the Summary entity to
request statistics from the other entities.

REPORT _REPLY. The responses were returned to the Summary entity in events
with this identifier. These responses contained objects of classes associated with the
entity responding.

LAST_EV. An event with this identifier was sent by each generator to indicate that
the simulation end time was exceeded and that the summary statistics should be
collected and printed.

Several C++ classes were developed that were not Sim++ entity classes:

1.

CustID: This class carried that data associated with each customer. It was carried as
the body in several types of events. Other than a constructor, it has methods:

a) BestLine: This method determines the line with the shortest length.

b) Arrived_On_Line: This method determines the customer's restroom tolerance
and schedules a TIMEOUT _EV event.

c) Leaving Line: This method cancels the TIMEOUT EV event scheduled when
the customer arrived.

d) Service_Started: This method saves the start of service by the teller for later
statistics.

VipID: This class carries the data associated with the VIPs and was carried in the
body of events with the VIP_EV identifier. The constructor was the only method
defined.

my _tally: This class was a modification of the Sim++-provided class tally. It added
an operator+= method that efficiently consolidates the statistics gathered by two
instances.

62

Sim++ BANK SIMULATION CODE

////// bank simulation

////// bank.h
dinclude <sim++.h>
#ifndef BANK_H
#define BANK_H

const MAX_LINE_LEN = 10000;
const MAX_LINES = 20;
const MAXNUM = 20;
const LEVEL1 = 0;

const MIN_ONQ = 100;

en\m Gender (Female, Male);
enum TellerState { Free, Busy);

enum INIT_EV,
CHECKLINE_EV,
LINELENGTH_EV,
CUSTOMER_EV

TIMEQUT_EV,
VIP_EV,
UNOCCUPY_EV,
BUSY_EV,
FREE_EV,
REPORT_EV,
REPORT_REPLY,
LAST EV };

// global parameters

extern double hours_to_run;
extern int numlines;
extern int numrests;

extern sim_entity_id line_id(MAX_LINES+1];
extern sim_entity_id reet_id[2);

extern sim_entity id teller_id(MAX_LINES+1];
extern sim_entity_id cust_g_id;

extern sim entity_id vip_g id;

extern sim entity_id summary_id;

int line_length(MAX_LINES+1);:
fendif

////// custid.h
#ifndef CUSTID_H
#define CUSTID_H
#include *bank.h*

// Customer id. object class
class CustlD
{

sim _event_id timeout_event;
public:

Gender gender;

int line, id, toilet;
sim_time on_queue, service_start;

CustID() (line = 0; id = 0; toilet = 0; on_queue =

0; service_start = 0;)

int BestLine(): N
void Arrived_on_Line(sim_erlang_ob
*t imeout_generator) ;

void Leaving Line();
void Service_Started():
}i

SIM_DECLARE_LIST(CustID) :

class VipID

{

public:

int line;

int ia,

VipID{) { line = 0; id = 0)

)

fendif

///// generator.h
#include *bank.h®

// CustomerSource object declaration
class CustomerGeneratorInit
(
public:
int gender_seed;
double arrival_rate:
int arrival_seed;
}:

class CustomerGenerator : public sim_entity

sim_randint_obj gender_generator;
8 _obj interarrival_time generator;
public:

CustcamerGenerator (sim_event &ev);
void body():

):
SIM_ENTITY (CustomerGenerator) ;

// VipSource object declaration
class VipGeneratorinit

{
public:
int line_seed;
double arrival_rate;
int arrival_seed;
):

class VipGenerator : public sim_entity
{

sim_randint_obj line_generator;
sim_negexp_obj interarrival_time_generator;
int vip_generated;

public:
VipGenerator(sim_event &ev):;
void body();

)
SIM_ENTITY (VipGenerator) ;

//1//7 line.h
#include *bank.h®
#include "custid.h*
#include °*my_tally.h®

// Line object initialization parameters
class Linelnit
(

public:
int ID;
sim_erlang obj *timeout_generator;
}:

// Line object stats class
class LineStats

{

public:
sim_accum cust_online;
double last_event_time;
my_tally cust_waiting time;

}:

// Line object entity declaration
class LineEntity : public sim_entity
{
int ID;
TellerState status;
CustID_head *queue;
LineStats stats;
sim _erlang_obj *timeocut_generator;
publTlc:
LineEntity (sim_event &ev);
void body ();
int PendingNumber () ;
void CheckLinelength(sim entity_id &requester);
void WaitingCustomer (CustID &customer);
void CustomerTimeout (CustID &customer);
void TellerBusy();
void TellerFree();
void Updatestats ()
void WriteReport ()

;
;

}.
SIM_ENTITY (LineEntity);

///7//7/7 my tally.h
#include <sIm++.h>
#ifndef MY_TALLY H
tdefine MY TALLY H

class my tally : public sim tabulate {

double Sum, Sumsq, Min, Max;
public:

my_tally();

my tally{const char *title);

vold reset ();

void update(double v);

void my tally::operator+=(my_tally tally);

int obs{) const { return sim_tabulate::obs(); |}

double avg() const;

double std dev() const;

double min() const;

double max () const;

const char *title() const { return
sim_tabulate::title(); |}

vyid report () const;

void freport{ const sim_file id &file) const;
|H

f#endif

///7/7// restroom.h
tinclude “bank.h"
#include "custid.h*

//Restroom initializa:zion object

class RestroomlInit

{

public:

Gender gender;
sim_erlang_ob} *restroom_service_generator;
sim erlanq obj *restroom toletance _generator;

14

// Res.-o'm stats object

Cclass RestroomStats

{

public:
int custamers, cust_walkaway;
sim_accum line_length;
sim_time last_event_time;

1H

// Restroom object entity declaration
class RestroomEntity : public sim_entity
i

Gender gender;

CustID _head *cust llst;

int occupy [MAX_LINES+1];

sim_erlang_ob] *service_generator;

sim erlang ob4 *tolerance _generator;

RestroomStats stats;

public:

RestroomEntity(sim event ¢ev);

void body();

int PendingNumber();

void HandleRestroom(sim_event &ev);
void HandleUnoccupy(sim event &ev);
vold UpcateStats();

void WriteReport ();

};
SIM_ENTITY (RestroomEntity);

////// summary.h
tinclude *bank.h"

// Summary obiect declaratlion
class Summary : public sim entity
{

int total_report;
public:

Summary (sim_events);

void body();

b
SIM_ENTITY {Swmmary):

//17/7/7// teller.h
finclude “bank.h*
f#include *custid.h”
finclude “my_tally.h®

// Teller Initialization parameters
class TellerInit

public:
int 1D;
sim_erlang_obj *customer service _generator;
sim _erlang_i “obj *vip_. service generator.
|H

// Teller Stats object
class TellerStats
{
public:
int cust_interrupts;
int vip turnaway;
my tally customer_ service_time;
my_tally VIP _service ctime;
Tellerstats(} { cusc 1nterrupts = 0; vip_turnaway =

0}
}

~ .o

// Teller object entity declaration
class TellerEntity : public sim entity
i
int ID;
sim_erlang obj *customer_service_generator;
sim erlang_obj *vip_ service_generator;
TelTerstats stats;
public:
TellerEntity(sim_event sev);
void body();
vold GetNextEvent (sim_event &ev);
void ServiceCustomer (CustID customer);
vold Servicevip(VipID VIP);
void TurnAwayVip (VipID VIP);
vold WriteReport ();

}:
SIM ENTITY (TellerEntity);

////// bank.c

tinclude <stdlib.h>
¢include "bank.h"
t¢include “generator.h*
#include “line.h®
finclude “restroom.h®
tinclude "teller.h"

// configuration parameters of the bank
sim_time hours_to_run;

int numlines;

int numrests;

// entity id for all objects
sim_entity_id line_id[MAX_LINES+1]);
sim_entity id rest_id(2];

sim_entity id teller 1d{MAX_LINES+l);
sim_entity id cust_g_id;

sim_ entity id vip g _1d;

sim_entity_id summary_id;

// the common random number generators

sim erlang_obj restroom_timeout_generator;

sim_erlang obj restroom_service generator(2};

sim erlang obj restroom_ _tolerance _generator; //shared
by both genders

sim_erlang_obj customer_ service_generator;

sim_ ' erlang obj vip_ service _generator;

double cust_arrv_rate;
int gcust_seed;
double vip arrv rate;
int gvip seed;

int gline seed;

int ggender_seed;

void read_data_file(char* datav(])

double tc_mean;

int tc_sample;

int gtc seed;

double rt_mean;

int rt_sample;

int grt_seed;

double rr_mean{2];

int rr_sample(2];

int grr_seed(2];

double cust_service_mean;
int cust_service sample;
int gecust _service seed;
double vip_service_mean;
int vip_service sample;
int gvip_service_seed;

// the random number parameters read from the inputs
// customer and vip arrival rates and their seeds
sscanf (datav(0], “Slg %d %1g %d", &cust arrv rate,
&gcust_seea, - -
&vip_arrv_rate, &gvip_seed);
// customer and vip service times (mean,
seed)
sscanf (datav(l],
&cust_service mean,
&cust_service_sample,
&vip_service mean,
&vip_service_sample,
customer_service_generator =
sim_erlang obj("Customer Service Time*,
cust _service _mean, cust_service_sample,
gcust_service seed),
vip_service_qeneraCQr = sim erlang obj(“VIP Service
Time*,
vip service_mean,
gvip_ service seed),

sample and
“$1g %d %d %lg vd sd",
&gcust_service_seed,

&gvip service_seed);

vip_service_sample,

// customer's time spent In restroom (mean, sample
and seed)
sscanf (datav (2], “slg %d %d %1g %d Ad“, &rr_mean(0],
&rr_sample(0], &grr_seed(0], &rr mean[l],
srr_sample(l], &grr_seed(1]);
restroom service generator{0] =
sim erlang obj("Female Service",
T rr_mean[0), rr_sample(0], grr_seed(0]);
restroor rvice_generator{l] =~ sim erlang_obj("Male
Service",

rr_mean(l}, rr_sample({l], grr_seed{l]);

65

// customer‘'s waiting time on a line before leaving
for restroom
// and restroom tolerance
sscanf {(datav (3}, *$1g %d %d $1lg %d sd*®,
&tc_sample, >c_seed,
&§rt_mean, &rt_sample, &grt_seed);
restroom_timeout_generator =
sim_erlang_obj(“Restroom timeout®,
tc_mean, tc_sample, gtc_ seed),
restroom_tolerance generator =
sim_erlang _obj(“Female tolerance®,
rt_mean, rt_sample, grt_seed);

&tc_mean,

// line seed and gender seed for their randint
function

sscanf (datav (4],
&ggender_seed);

“%d $d", ¢gline seed,

// number of lines in the bank, number of toilers in
each restroom

// and number of hour to run the simulation

sscanf (datav(S], *sd §d %lg", &numlines, &numrests,
&hours_to_run);

sim_trace (LEVEL1,
parameters\n®);

}

“initalizing all input

void sim_initialize(int, char *[], int, char* datav(])
{

char line_name[20), teller_name(20], name[20];

read_data_file(datav);

sim trace(LEVEL],
entities\n");

*creating line and restroom

for (int i=1; i<=::numlines; i++) |{

sprintf(line name, “line_entity_%d=, i);
Linelnit line init _info;
line init info.ID = i;
line_init”info.timeout_generator =
&restroom timeout generator,
:line _id(1] = sim_create("LineEntity"™,
INIT_EV

line_name,

SIM PUT (Linelnit,
line_init_info));
sprintf(teller_name, “teller entity_ %d~, i);
TellerInit teller init_info;
teller_init_info.ID = I;
teller init_info.customer_ service generator =
&customer service generator;
teller init info. vip_service_generator =
&vip service generator,
:teller id(i] = sim_create("TellerEntity®,
teller name, INIT_EV,
- SIM _PUT (TellerInit,
teller init_info});
}

for (Gender j = Female; J <= Male; 3++) {
sprintf(name, “restroom_entity %d*, 3);
RestroomInit restroom_init_info;
restroom_init _info.gender = 3;
restroom_init_info.restroom_service_generator =
&restroom_service_generator(3});
restroom_ {nit_info.restroom_tolerance_generator =
&zestroom tolerance_generator;

rest_ld[j] = sim_create("RestroomEntity‘,
INIT BV,

name,

SIM PUT (RestroomInit,
restroom_init_info));
}

CustomerGeneratorInit custgen_init;
custgen_init.gender_ seed = ggender_seed;
custgen_init. arrival_rate = cust_arrv_rate;
custgen_init.arrival seed - gcust seed;

cust_g_id = sim_create (*CustomerGenerator",
*customer generator" INIT EV,
SIM PUT(Customerceneratorlnit,
custgen_init)};

VipGeneratorlnit vipgen init;

vipgen_init.line_seed = gline_seed;

vipqen init.arrival rate = vip arrv rate,

vipgen_init.arrival_seed = gvip_see

vip_g_ Td = sim create(“vipcenerator“
“vip_ generator*, INIT BV,

SIM PUT(VipGeneratorInit,

vipgen_init));

summary id = sim_create ("Summary*, *summary",
INIT_EV);
}

/1///7/7/ custid.c
#include *custid.h*

int CustID::BestLine()
{

int bestline;
int bestlen = MAX_LINE LEN;

for(int line = 1; line <=:: numlines;
if (line_length{line] == 0) {
bestline = line;
break;

line++) {

}
if (line_length[line] < bestlen){
bestline = line;
bestlen = line_length(line];
}
}
return bestline;
}

void CustID::Arrived_on_Line(sim_erlang_ob]
*timeout_generator)

’ ifdef INSTRUMENTED
1f (on_queue == 0,0)
on queue = sim_clock{);
* endif

double timeout = timeout_generator->sample();
timeout_event = sim_schedule(sim_current (),
timeout, TIMEOUT_EV,
SIM_PUT (CustID, *this));

}

vold CustID::Lleaving Line()
{

}

vold CustID::Service_Started()

sim_cancel (timeout_event);

{
’ ifdef INSTRUMENTED
if (service_start == 0.0)
service_start =~ sim_clock();
¢ endif

//////// generator.c
¢include "generator.h"
#include “custid.h”

/t
** CustomerGenerator object entity implementatiocn
*/

CustomerGenerator::CustomerGenerator (sim_event &ev)
{

sim_trace (LEVELI,
generator\n®});

"Initializing customer

66

CustomerGeneratorInit init_info;

SIM_GET (CustomerGeneratorlInit, init_info, ev);

gender_generator = sim randint_ob3 (*Customer
Gender*, 0, 1,

init_info.gender_ seed);
Tnterarrival time _generator =
sim negexp obj(“Customer Interarrival®,
init_fnfo.arrival_rate, init_info. atrival _seed);
}

vold CustomerGenerator: :body ()
{
int total_cust = 0;
sim_event ev;
sim | time interarrival_time;
custID tag;

while (sim clock() <= ::hours_to_run*60) {

total_cust ++;
sim_trace (LEVEL1,

total cust),
tag.gender = (Gender) gender_generator,sample();
tag.line = tag.BestLine();
tag.ld = total cust;
sim_schedule(::line_id[tag.line], 0.0,

CUSTOMER EV, SIM PUT(CustID, tag)):

“Generating customer #: %d\n*®,

interarrival_time =

interarrival timeé generator.sample();
sim_hold_for (Interarrival_time, SIM NONE, ev);
}

//indicate to summary that no more customers will
arrive

sim_schedule(::summary_id, 0.0, LAST EV,
SIM PUT (int,total _cust))7
}

/ﬁ
** VipCustomerGenerator object implementation
*/

VipGenerator::VipGenerator (sim_event &ev)

sim_trace (LEVEL1, “entering vip constructor\n®);

vipGeneratorInit init_info;

SIM GET(VipGeneratorInit, init_info, ev);

line _generator = sim_randint obj('VIP Line*, 1,
numlines,

init_info.line seed);
Ynterarrival_t1me_qenerator = sim_negexp_ob](*VIP
Interarrival®,

init_info.arrival rate, init_info.arrival_seed);
}

void VipGenerator::body ()
{
int total vip = 0;
VipID vip;
sim_event ev;
sim_time interarrival_time;

interarrival time =
interarrival time _generator.sample();
sim hold for(intetarrival _time, SIM _NONE, ev);
while (sIm_clock{) < ::hours_to_run*60) {
total vip++;
sim_trace(LEVEL1,
#%d\n", total _vip);
vip.line = line_generator.sample(};
vip.id = total vip
sim_schedule(::teller_id{vip.line]), 0.0, VIP_EV,
SIM PUT(VipID, vip)):

"Generating VIP customer

interarrival_time =
interarrival_time_ generator.sample();
sim_hold_for (Interarrival_time, SIM_NONE, ev);
1

//indicate to summary that no more customers will
arrive

sim_schedule(::summary id, 0.0, LAST_EV,
SIM_PUT (int,total_vip));
}

//////// line.c
#include *line.h*
¢include <stdio.h>
/Q

** Line object entity implementation
*/

LineEntity::LineEntity(sim_event &ev)
{
char title{20];

sim _trace(LEVEL1l, *“Line entity initializing\n®);
Linelnit init_info;

SIM GET(Linelnit, init_info, ev);

ID = init_info.ID;

timeout_generator = init_info.timeout_generator;

status = Free;
queue = new CustID_ head (“queue®);
line_length[ID} = 0:

¢ ifdef "-INSTRUMENTED
sprintf(title,*Line %d*,1D);
stats,cust_online = sim_accum(title);
stats,last_event_time = 0;

4 endif -

void LineEntity: :body ()
{

sim_event ev;
CustID customer;

sim wait (ev);
while (ev.type() != REPORT_EV) |{
switch(ev.type()) {
case CHECKLINE_EV:
CheckLinelLength (ev.scheduled by ());
break; -
case CUSTOMER_EV:
SIM GET(CustID, customer, ev);
WaltingCustomer (customer);
break;
case TIMEOUT_EV:
SIM_GET (CustID, customer, ev);
CustomerTimeout (customer);
break;
case BUSY_EV:
TellerBusy(};
break;
case FREE_EV:
TellerFree{();
break;
default:
sim_error (“unexpected event type %d from:
$s\n", ev.type(},
ev.scheduled by().name());
}

sim_select (SIM_ANY, ev);
if Tev == SIM _NO EVENT) {
sim_trace(LEVELl, “Waiting for next customer or
vip\n");
sim_wait (ev);

}

¢ 1fdef INSTRUMENTED
WriteReport ();

endif

sim_trace(LEVELl, "Line Terminated\n*);
}

int LineEntity::PendingNumber (}
{

if ((!queue->empty()) && (status == Free))
return (queue->cardinal (});

else if ((!queue->empty()) && (status == Busy))
return (queue->cardinal ()} +1);

else if (status == Busy)
return 1;

else
return 0;

}

void LineEntity::UpdateStats()

{
¢ ifdef INSTRUMENTED
stats.cust_online.update((sim_clock{() -
stats.last_event_time),
double (PendingNumber()));
stats.last_event_time = sim clock();
endif
}

vold LineEntity::CheckLinelength(sim entity id
&requester)

sim_trace (LEVEL1, *handling check line event\n%);
int length = PendingNumber{();
sim_schedule (requester, 0.0, LINELENGTH_EV,

SIM PUT (int, length));

}

vold LineEntity::WaitingCustomer (CustID &customer)
(CustID_elem *elem;

sim_trace(LEVELl, *"handling waiting event\n");
// data collection, e.g. ave. queue length
1fdef INSTRUMENTED

UpdateStats{);
endif

// if the line is empty and the teller is free
if ((queuve~>empty() > 0) && (status == Free)) {
//send directly to teller
4 i fdef INSTRUMENTED
stats.cust_waiting time.update(0.0);
* endif
sim_schedule(::teller_id{I1D], 0.0, CUSTOMER_EV,
SIM_PUT (CustID, customer));
}

else
{
customer.Arrived on_Line (timeout_generator); //
schedule restroom
// enqueue the customer on the line
elem = new CustID_elem{customer);
elem->append (queue}) ;
line_length{ID] ++;
}
}

vold LineEntity::CustomerTimeout (CustID &custamer)
//Customer may have been on line too long, needs a
trip to the restroom
{

CustID temp;

CustID_elem *elem;

sim_trace(LEVEL1, “handling timeout event\n®);

//must search for customer in queue
elem = queue->first(};
while (elem != 0)
{
temp = elem->contents();
if (temp.id == customer.id) {
in line

//found customer
//take off line

L] ifdef INSTRUMENTED
UpdateStats();

[endif
elem->out {) ;

67

//send to restroom

int J = (int) customer.gender;

sim_schedule(::rest_id(3}}, 0.0, CUSTOMER_EV,
SIM PUT(CustID, customer));

delete elem;

line_length[ID] --;

return;

else
elem = elem->next ();

)

sim_error (“Couldn't find timed out customer in
line\n®);
}

void LineEntity::TellerBusy ()
{

sim trace (LEVELl, “"handling busy event\n%};
status = Busy;
}

void LineEntity::TellerfFree()
{

CustID elem *elem;
CustID nextCustomer;

sim trace(LEVELl, “handling free event\n®);
status = Free;
if (!queve->empty()}{
L jfdef INSTRUMENTED
UpdateStats{);
* endif
elem = queue->first ();
elem->out ();
nextCustomer = elem~>contents{);
nextCustomer.Leaving Line();
trip -
line length[ID])--;
¢ ifdef INSTRUMENTED
stats.cust_walting time.update({(sim_clock() -
nextCustomer.on_queue));
[endif
sim_schedule(::teller_id(ID], 0.0, CUSTOMER_EV,
SIM_PUT (Cust ID, nextCustomer));
delete elem;
]
}

// cancel restroom

void LineEntity::WriteReport ()
{
sim_schedule (summary_id, 0.0, REPORT_ REPLY,
SIM_PUT (LineStats, stats));
}

////1/// my_tally.c
#include *"my_tally.h*
f#include <math.h>
my_tally::my_tally(): (“my_tally")
{

Sum = 0.0;
Sumsq =~ 0.0;
Min = 1.0e55;
Max = -1,0e55;

// very large
// very large negative

my_tally::my tally(const char *title) :
“my_tally")
{

(title,

Sum = 0.0;
Sumsq = 0.0;
Min = 1.0e55;
Max = ~1,0eS55;

// very large
// very large negative
}

vold my_tally::reset ()

68

sim_tabulate::reset ();
Sum = 0.0;
Sumsq = 0.0;
Min = 1.0e5S5;
Max = -1.0e55;

// very
// verv

large
large negative
}

void my tally:
{

supdate (double v)

sim_tabulate::update_obs();
Sum += v;
Sumsq += (v*v);
1f (v < Min) Min = v;
1f {(v > Max) Max = v;
}

void my_tally::operator+=(my_tally tally)
{

update_obs (tally.obs()});

Sum += tally.Sum;

Sumsq += tally.Sumsq;

if (tally.Max > Max) Max = tally.Max;

1f (tally.Min < Min) Min = tally.Min;
}

double my_tally::avg() const

{
double obs = double(sim tabulate::obs{));
return Sum / obs;

]

double my_tally::std dev() const
{
double obs = double(sim_tabulate::obs());
return sgrt{((Sumsq ~ (Sum * Sum) / obs)/ (obs -
1.0})2
}

double my tally::min() const { return Min; }
double my_tally::max() const { return Max; i}

void my_tally::report () const
{
sim_printf(
“$12s s6d §9.3f 89.3f %9.3f %9,.3f %9,.3f
\n*®,
title(),
obs (),
Sum,
avg(),
std_dev (),
min(),
max({)
|H
}

void my_tally::freport { const sim_file id &file) const
{
sim fprintf{
- ile,
»%$12s %6d $9.3f $9.3f %9.3f %9.3f 49.3f
\n*,
title(),
obs (),
Sum,
avg(),
std_dev(),
min(),
max(}
|H

///7//// restroom.c
#$include “restroom.h"
tinclude <math.h>

RestroomEnt ity::RestroomEntity (sim_event &ev)
{

sim trace(LEVELl, "Restroom Constructor\n®);
Restroomlnit init info;
SIM_GET (RestroomInit, init _info, ev);
gender = init info.gender;
service generator =
init_info.. restroom_service_generator;
tolerance_generator =
init_info.restroom_tolerance generator;

for(int i=1; i<=::numrests; 1++)
occupy(i] = 0;
cust_list = new CustID_head(“cust_list“);

1fdef INSTRUMENTED
stats.customers = 0;
stats.cust_walkaway = O;
if (gender == Female)
stats.line_length = sim_accum(“Female*);
else
stats.line_length = sim accum("Male®);
stats.last_event_time = 0;
endif

— -

void RestroomEntity::body ()
{

sim_event ev;
CustID tag;

sim wait (ev);
while (ev.type() != REPORT_EV) |{
switch{ev.type(}) |{
case CUSTOMER _EV:
HandleRestroom(ev);
break;
case UNOCCUPY EV:
HandleUnoccupy {ev) ;
break;
default:
sim_error (“unexpected event type %d from %s\n*®,
ev.type(),

}
sim_select (SIM_ANY, ev);
if Tev == SIM_NO_EVENT) {
sim_trace(LEVELl, "Waiting for next customer or
vip\n"});
sim_wait (ev);
}

}

¢ ifdef INSTRUMENTED
WriteReport ();

4 endif

ev.scheduled by().name());

sim_trace(LEVELl, “Restroom Terminated\n®);

}
void RestroomEntity::HandleRestroom{sim_event &ev)

Cust1ID tag;

double restroom duration;
int restroom tolerance;
CustID_elem *elem;

SIM_GET(CustlD, tag, ev);

ifdef INSTRUMENTED
stats.customers++;
endif

for (int i=1;
1f (occupy(i] ==
break;

i <= ::numrests;
0

i++)

if {((cust_list-dempty() > 0) && {1 <= ::numrests))
sim tta*a(LEVELl "restroom is available\n");
occupy(i] = 1;
tag.toilet = §;
restroom_duration = serv1ce_generator->sample():

{

69

sim_schedule (sim_current (), restroom duration,
UNOCCUPY_EV,
SIM_PUT (CustID, tag));
}

else |
sim_trace (LEVEL1,
are occupied\n*®);
restroom t-ierance =(int) anint(
tolerance generator->sample());
if (PendingNumber () > restroom tolerance) {
] ifdef INSTRUMENTED
stats.cust_walkaway++; // customer walk out of

“there is a line or all toilets

bank

[endif
return;

}

else {
// enqueue it on the list
elem = new CustID elem(tag);
elem->append {cust_list);

§ ifdef INSTRUMENTED

UpdateStats();
$ endif

int RestroomEntity::PendingNumber ()
{
return (cust_list->cardinal()};

void RestroomEntity::HandleUnoccupy (sim_event &ev)
{

CustID_elem *elem;
CustID tag, temp;
double restroom_duration;

SIM_GET (CustID, tag, ev);
tag.line = tag.BestLine();
sim_schedule(::1line_id(tag.line], 0.0, CUSTOMER EV,
SIM PUT(CustID tag))s
int 1 = tag.toilet;
occupy[i] = 0;
if (lcust list->empty({)) {
occupy (T] = 1;
elem = cust_list->first();
elem->out ();
temp = elem->contents{);
delete elem;
] ifdef INSTRUMENTED
UpdateStats () ;
$ endif
restroom duration = service_generator->sample();
sim_schedule(sim_current (), “restroom _duration,
UNOCCUPY_EV,
- SIM_PUT (CustID, temp));
}

]

void RestroomEntity::UpdateStats()
{
int num _onQ = PendingNumber ();
stats.1lIne_length.update(
(sim_clock () - stats.last_event_time),
double (num_onQ}) ;
stats.last_event_time = sim_clock();
}

void RestroomEntity::WriteReport ()

sim_trace(LEVEL],
%d \n*, gender};
sim_schedule (summary_id, 0.0, REPORT_REPLY,
SIM | pUT (Rest roomStats, stats));
}

*Writing Restroom Report: Restroom

////77// summary.c
#include *summary.h®
#include "line.h*

#include “teller.h®
#include *“restroom.h*

Summary::Summary (sim_event&)
{
sim_trace (LEVEL],
total_report=0;
}

“summary constructor\n");

void Summary::body ()
{

sim event ev;

sim_from_p customer generator(::cust _g_ id);

sim_from p vip_generator(tivip g id)7

sim | | type_p report reply_p(REPORT REPLY) ;
1fdef INSTRUMENTED

int number;

sim file_id report_file;

Linestats line lenqth stats;

TellerStats teller_totals;

TellerStats teller report;

RestroomStats restroom_report;

// generate the report
report_flle = sim_fopen(“report™, “w*);
endif

//Generators
//wait for both generators to finish
sim wait_for(customer generator, ev);
ifdef INSTRUMENTED
SIM GET(int, number, ev);
sim_fprinct(report_file, “%d customers arrived\n®,
number) ;
4 endif
sim_wait_for(vip generator, ev);
ifdef INSTRUMENTED
SIM_GET(int, number, ev);
sim_fprintf(report_file, “%d VIPS arrived\n®,
number) ;
endif

//Lines
//print the statistics for the line lengths

ifdef INSTRUMENTED
my _tally customer waiting time("Waiting Time"):
sim fprintf(report _file,

_______________ \n¥);
sim fprintf (report_file, “Line Statistics\nline
Lengths\n");
sim_fprintf(report_file,
endif
for (int { = 1; { <= ::numlines;
sim_schedule(::line_id[(i], 0.0,
L ifdef INSTRUMENTED
sim_wait_for(report_reply p, ev);
SIM GET (LineStats, lIne_length_stats, ev);

::sim_accum_heading());

i++4) |
REPORT_EV) ;

line_length_stats.cust_online.freport (report_file);
customer waiting_time +=
line_length_stats.cust_waiting_time;
¢ endif
}
ifdef INSTRUMENTED
sim_fprintf(report_file, ::sim tally heading(})}:
customer waiting_tIme. freport(report file);
4 endif

//Restrooms

1fdef INSTRUMENTED
int total_customers = 0;
int total customers_walking away = 0;
sim fprintf(report _Tile,

---------- ~————=\n%);
sim fprintf(report_file,
Lengths\n®};
sim tprintf(report_file,
4 endlf
for (1 = 0;
sim_schedule (:

“Restroom Statistics\nLine
::sim_accum_heading{());

i<=1; i++)

t
:rest_id[{1i], 0.0, REPORT_EV);

70

] i fdef INSTRUMENTED
sim wait_for(report_reply p, ev);
SIM (GET(RestroomStats, restroom_report, ev);
restroom_report.line_length. freport(report file);
total customets += restroom _report. customers;
total customers _walking_away +=
restroom report.cust_walkaway;
¢ endtf
}
¢ ifdef INSTRUMENTED
sim_fprintf(report_file, “There were %5d trips to
the rest rooms\n",
total_customers);
sim fprintf(teport file, “%5d customers walked away
without service\n®,
total_customers_walking_away);
§ endif

//Tellers

//sum up the totals for the tellers
ifdef INSTRUMENTED

teller totals.customer_service time = my tally(“All
Customers®);

teller totals.VIP_service time = my tally(*All
VIPS*);

teller_totals.cust_interrupts = 0;

teller_totals.vip turnaway = 0;

sim fprintf(report file,

—————————————— \n%);
sim_fprintf(report_file, “Teller Service
Reports\n”);
sim fprintf (report_file,
endlf
for (i = 1; 1 <= ::numlines; i++) {
sim_schedule(::teller id{ij, 0.0, REPORT_EV);
L Lfdef INSTRUMENTED
sim _wait_for(report_reply p, ev);
SIM GET (TellerStats, teller report, ev);

t:sim tally heading());

teller report.customer_service_time.freport (report_ fil
e);
teller_totals,customer service time +=
teller_report.customer_: service time;

teller report.VIP_service time. freport (report_file);

teller totals. VIP service time +=
téller report.VIP service _time;

teller_totals.cust_interrupts +=

teller report.cust_interrupts;
teller_totals.vip_turnaway +=

teller reporc vip_ turnaway;

14 endif

}
ifdef INSTRUMENTED

teller totals.customer_service_time.freport (report_fil
e}’
teller totals.VIP_service_time.freport (report_file);
sim fprintf(report file,
“Number of interrupts by VIPs: %d\n",
teller totals.cust_interrupts);
sim fprintf(report file,
“Number of vips turned away without being
Ad\n*,
teller_totals.vip_turnaway);

serviced:

sim_fprintf (report_flle,

//sim_fprintf(report_file,
total vip = %d\n",

// total _cust, total vip);

//sim fprintf (report_file,
"ave waTting on_gueue_ Time = %f\n",

7/ total_queuved_time/total_queued cust);

//sim fprincf(report file, "number of customers on
lines: ¥d\n®,

// sum_line_length_stats.cust_online);

//sim fprintf(repott fTle, “number of customers

“total_cust = %d \t

vigiting restroom: Sd\n*,
7/

sum_line_length_stats.cust_timeout);
/7sim_Tprintf{report_file,
//*number of customers left without being
sd\n*
/}sum_restroom_report.cust_walkaway);

serviced:

4 endif
}

/////1//// teller.c
#include *teller.h®
#include <stdio.h>

/t
** Teller object entity implementation
*/

TellerEntity::TellerEntity(sim event sev)
{

sim_trace(LEVELl, “entering teller entity
constructor\n");
TellerInit init_info;
SIM_GET(TellerInit, init_info,
ID = init_info.ID;
customer_service_generator =
init info. customer service_generator;
vip service qenerator =
init_Tnfo. vip service_generator;

ev);

¢ 1fdef INSTRUMENTED
char title(60];
sprintf(title, “Teller 8d Customers",ID);
stats.customer_service_time = my_tally(title);
sprintf(title, “Teller %d VIPs*,ID);
stats.VIP_service time = my_ tally(title);

4 endif

void TellerEntity::body ()
{

sim_event ev;
CustID newCustomer;
VipID VIP;

GetNextEvent { ev);
while (ev.type() != REPORT_EV) {
switch(ev.type()) {
case CUSTOMER_EV:
SIM GET (CustID, newCustomer, ev);
ServiceCustomer (newCustomer) ;
break;
case VIP EV:
SIM GET(VbeD, vie, ev);
ServiceVip (VIP);
break;
default:
sim_error(*unexpected event type %d from: %s\n",
ev.type{),

}
GetNextEvent { ev);

ev.scheduled_by () .name());

)

4 i1fdef INSTRUMENTED
WriteReport {);

4 endif
sim_trace(LEVELl, “Teller Terminated\n"};

i
void TellerEntity::GetNextEvent (sim_event &ev)
// tell

sim_schedule(::

! line_id[ID],
line we are ready

0.0, FREE_EV);

//wajit for something

sim_select (SIM_ANY, ev);

1f Tev == SIM | NO EVENT)

{

sim_trace(LEVEL],
VIP\N®);

"Waiting for next customer or

71

sim_wait (ev);
}
void TellerEntity::ServiceCustomer (CustID cuscomer)

sim_time cust_service_time,
sexrvice time remaining;

sim type _p VIP_p(VIP_EV);

sim event ev;

sim trace (LEVEL1,

*handing customer service
event\n");

sim _schedule(::1ine_id{ID], 0.0, BUSY_EV); //prevent
line Trom sending more
1fdef INSTRUMENTED
customer.Service Started();
endif

cust_service_time = customer_service_generator-

>sample({);
service_time_remaining = cust_service time;

while (service_time_remaining > 0.0)
{
service time_remaining =
sim_hold_for (service_time_remaining, VIP_p,

ev);
if (service time_remaining > 0.0) // interrupted
by VIP
{
$ ifdef INSTRUMENTED
stats.cust_interrupts++;
4 endif
vipID VIP;

SIM GET(VipID, VIP, ev);
ServiceVip(VIP);
}

}

lfdef INSTRUMENTED
stats.customer_service_time.update ((sim_clock () -

customer.service_start));

¢ endif

1

void TellerEntity::ServiceVip(VipID)
{

sim time vip service time, remaining_service time;
sim_type p newvIP p(VIP_EV);

VipID new_VIP;

sim_event ev;

sim trace (LEVELl, “handling vip customer service
event\n");

sim_schedule(::line_id[ID], 0.0, BUSY_EV);
“//prevent line from seniing new cust

vip_service time = vip_service_generator->sample();

remaining_service_time = vip service time;
while (remalning “service time > 0.0}
{
remaining_service time =
sim_hold_ “for (remaining service_time, newVIP_p,
ev);
if (remaining_service time > 0.0) /’/
interrupted by another VIP

{
SIM_GET(VipID, new VIP, ev);
TurnAwayVip(new VIP),
}
}

¢ ifdef INSTRUMENTED

stats,VIP_service_time.update(vip_service_time);
¢ endif
}

void TellerEntity::TurnAwayVip (VipID)

1

1fdef INSTRUMENTED
stats,vip_turnaway++;

4 endlf

i

void TellerEntity::WriteReport ()
{

sim_trace(LEVEL1, "Writing Teller Report: Teller %d
\n*, ID);

sim_schedule (summary_id, 0.0,
REPORT_REPLY, SIM_PUT (TellerStats, stats));
}

72

APPENDIX D

SMALLTALK-80 CODE

SimulationObject subclass: #Test
instanceVariableNames: **
classVariableNames: *°*
poolDictionaries: **
category: ‘Simulations*!

!Test methodsFor: ‘list of tests®!

newtest4: num

{asim dummy block|
block _ (dummy < num ifTrue:
[| myToken |

dummy _ dummy + 1.

asim schedule: block at: 1.

myToken _ self acquire: 1 ofResource:
‘token’.

self holdFor:
“Time millisecondsToRun:
[dummy _ O .
asim _ Simulation new.
asim produce: 1 of: ‘token*.
asim schedule: block at: 1 .
asim startUp.
[asim proceed = nil) whileFalse
jry

1.0; release: myToken]].

!Test methodsfor:
testl: num

'list of tests'!

|asim dummy|
~Time millisecondsToRun:
[dummy O .
asim Simulation new .
num tImesRepeat:
[asim schedule: [dummy _ dummy + 1)
at: (Uniform from: 1 to: 1000)
asim startUp.
[asim proceed = nil) whileFalse .)! !

next] .

!Test methodsFor: ‘list of tests'!

test2: num

lasim dummy block|

block _ [dummy < num ifTrue:
(dummy dummy + 1.

asim schedule: block at: 1}].
~Time millisecondsToRun:
{dummy _ O .
asim _ Simulation new.
asim schedule: block at: 1 .
asim startUp.
{asim proceed = nil} whileFalse
]t

!Test methodsFor: 'list of tests'!
taest3WithDelay: num

lasim|

“Time millisecondsToRun:

[asim _ Simulation new.

asim schedule: [Counter new countWithDelay: num] at:

asim startUp.
{asim proceed = nil} whileFalse
|

{Test methodsFor: 'list of tests'!
test 3WithOneDelay: num

lasim)
“Time millisecondsToRun:
{asim _ Simulation new.

73

asim schedule: [Counter new countWithOneDelay: num]
at: 1 .

asim startUp.

[asim proceed = nil) whileFalse

]t

{Test methodsFor: 'list of tests'!
test3WithOutDelay: num

lasim!

~Time millisecondsToRun:

[asim _ Simulation new.

asim schedule: [Counter new countWithOutDelay: num]
at: 1.

asim startUp.

{asim proceed = nil] whileFalse

IR

!Test methodsFor:
test4: num

‘list of tests'!

lasim|
~Time millisecondsToRun:
[asim _ Simulation new .
asim produce: 1 of: ' token' .
num timesRepeat:
{asim schedule:
token _

[1token|

self acguire: 1 ofResource: ' token'
self release: token }
at: 1] .

asim startUp.

[asim proceed = nil} whileFalse .}! !

ITest methodsFor: *list of tests*'!

testS: num

tasim inthand|

~Time millisecondsToRun:

{asim Simulation new .

inthand _ InterruptHandler new.
asim schedule: [num timesRepeat:
0.

{inthand handleWith:

self holdFor: 100
withHandler: inthand.]]
at: 1 .

asim schedule: [num timesRepeat: (self holdFor: 1 .
inthand interrupt})
at: 1 .

asim startUp.

[asim proceed = nil) whileFalse ,]! !

SimulationObject subclass: #CustomerObiect
instanceVariableNames: ‘myGender bajilOut *
classVariableNames: '°'
poolDictionaries: **
category: 'SimBenchmark*!

{CustomerObject methodsFor:
getGender
-

taccessing'!

~“myGender! !
1CustomerObject methodsFor: ‘simulation control*!
getBestLine

*return first avallable line, or otherwise line
with shortest queue®

| best |
best 1.
1 to: NUMLINES do: ([:index |
(self inquireFor: 1 ofResource:
printstring))
ifTrue: [“~index]).
({self numWaiting: index) < (self numWaiting:
best))

{index

ifTrue: [best _ index]
“pest! !
{CustomerObject methodsFor: ‘simulation control'!
goToThePotty
“simulate going to the potty"

| tolerance resname token wait |

tolerance _ (Gamma mean: 2.0 var: 0.5)
improvedNext .
resname 'pot’ , (myGender printString).

((((simulation active) provideResourceFor:
resname) returnPendingNum)
> tolerance)
ifTrue: (bailOut _ true]

1fFalse:
[token _ self acquire: 1 ofResource:
resname.
(myGender = 0)

1fTrue: [walt _ (Gamma mean: 5.0
var: 1.0) next]

ifFalse: {wait _ (Gamma mean: 3.0
var: 1.0) next},

self holdFor: wait .
self release: token]! !

!CustomerObject methodsFor:
numWaiting: index
“"return number waiting on resocurce index"

‘simulation control*!

| resource |

resource _ (Simulation active)
provideResourceFor: (index printstring).

~“resource returnPendingNum! !
!CustomerObject methodsFor: ‘simulation control‘!
tasks

"Customer subobject tasks“

| banksim myline mystring myvipstring mytoken
servicetime starttime
partialtime pottyinthand vipinthand |
banksim _ Simulation active.
pottyinthand InterruptHandler new
handleWith: (self goToThePotty].
mytoken _ nil.
{mytoken = nil] whileTrue:
(pailCut {fTrue: (~nilj.
banksim schedule: [pottyinthand interrupt]
((Gamma mean: 3.0 var: 1.0) improvedNext).
myline _ self getBestlLine.
mystring _myline printString.
myvipstring ‘vip' , mystring.
mytoken _ self acquire: 1 ofResource:
mystring withHandler: pottyinthand).
vipinthand (banksim vipHandler: myline)
handleWlth:
[partialtime _ (banksim time) - starttime.
servicetime “servicetime - partialtime.
self release: (self acquire: 1 ofResource:
myvipstring)].
servicetime _ (Exponential mean:
starttime

after:

10.0) next .
__ banksim time.

{(servicetime > 0.0) {fTrue: {self holdFor:
servicetime withHandler: vipinthand].

self release: mytoken.! !
!CustomerObject methodsFor: 'initialization'!
initialize

"initialize instance variables*®
myGender _ {(RAND next)
bailout _ false! !

+ 0.5) truncated.

74

CustomerObject subclass: #$VIPObject
instanceVariableNames: *'°®
classVariableNames: '*
poolDictionaries: **
category: ‘'SimBenchmark*!

1VIPObject methodsFor:
tasks
“vip object tasks®

'‘simulation control®!

{banksim myline mystring myvipstring mytoken

myviptokeni
mytoken _ nil.
banksim _ Simulation active.
myline (RAND next * NUMLINES) truncated + 1 .

mystring myline printString.
myvipstring _ 'vip' , mystring.
(self inquireFor: 1 ofResource: myvipstring)
1fTrue: ([myviptoken _ self acquire: 1
ofResource: myvipstring] -
ifFalse: [~nil].
{self inquireFor: 1 ofResource: mystring)
ifTrue: [mytoken _ self acquire: 1
ofResource: mystring]
1fFalse: [(banksim vipHandler: myline)
interrupt].
self holdFor: (Exponential mean: 7.0) next .
self release: myviptoken.

(mytoken ~ nil) 1lfFalse: [self release: mytoken]!

#BankSimulation
‘vipIntHandlers *

Simulation subclass:
instanceVariableNames:
classVariableNames: **
poolDictionaries: *°*
category: ‘SimBenchmark'!

!BankSimulation methodsFor: '{nitialization*!

defineArrivalSchedule
“Bank simulation subclass provides the simulation

objects"

self scheduleArrivalOf: CustomerObject

accordingTo: (Exponential mean:
2.0);
scheduleArrivalOf: VIPObject
accordingTo: (Exponential mean:
2.0 ¢

tBankSimulation methodsFor: ‘'initialization'!
defineResources

"Bank simulatlon resource initialization®

|indexstring|
1 to: NUMLINES do:
[:index |
indexstring _ index printString.
self produce: 1 of: indexstring.
self produce: 1 of: (‘'vip' , indexstring)]).
self produce: 4 of: ‘pot' , O printString;
produce: 4 of: ‘pot' , 1 printString.! !
!BankSimulation methodsFor: ‘'initialization'!
initialize
“additional initializations for Bank Simulation*

super initialize.
Transcript show: * Bank Sim Runn.ng
Smalltalk at: #RAND put: (Random new).
Smalltalk at: #NUMLINES put: 3 .
vipIntHandlers _ Array new: NUMLINES.
1 to: NUMLINES do:
[:index | vipIntHandlers at: index put:
(InterruptHandler new)].! !

'BankSimulation methodsFor:
vipHandler: num
*return vip int handler for line num®

‘accessing'!

“viplntHandlers at: num! !

Object subclass: #RunBankSim
instancevVariableNames: **
classVarliableNames: *°
poolDictionaries: ‘'
category: ‘SimBenchmark'!

"

RunBankSim class
instancevVariableNames: '*!

'RunBankSim class methodsFor: ‘all‘!
time: value
“comment stating purpose of message*

| banksim |

banksim _ BankSimulation new startip.

[banksim time < value] whileTrue: [banksim
proceed]}! !

75

/1117171777 Test 1:

#include "/va/jll/event/event._h*
#include <stdlib.h>

#include <ACG.h>

#include <Uniform.h>

#include <stream.h>

ACG gen;
Uniform r(0.0, 1000.0, &gen);

class foo {
public:
void bar();
}:

foo *f;

class foobarEvent : public Event {
public:
foobarEvent {(foo *f) : F(f) (!}
private:
foo *F;

virtual void start() { F=->bar();

IH

void foo::bar({) i{
)

main{int argc, char *targv(]) {
int n = atoi(argv(l));
£ = new foo;
init_simulation(n);
while (n—-)

EVENT (foobarEvent, (f), r(});
run_simulation();
print_event_stats();

HALT () ;

/777777717 Test 2:

#include */va/jil/event/event.h®
#include <stdlib.h>

class foo {
public:
void bar (int);
b

foo *f;

class foobarEvent : public Event |
public:
foobarEvent (int N) : n(N} {}
private:
int n;
void start() { f->bar(n); }
IH

void foo::bar(int n) {
{f (=-n > Q)
EVENT (foobarEvent, (n), 0.0);
}

main(int argc, char *argvi{]) {
int n = atoitargv(1]);
f = new foo;
init simulation(n);
EVENT (foobarEvent, (n), 0.0);
run_simulation{();

APPENDIX E
MOOSE CODE

print_event_stats();

////7/7///7 Test 3a:

#include */va/jil/event/event . h”
#include <stdlib.h>

class foo {
public:
void bar(int);
H

foo *f;

class foobarEvent : public Event {
public:
foobarEvent ({nt N) : n(N) {}
private:
int n;
void start() { f->bar(n); }
5

vold foo::bar(int n) {
if (--n > 0)
f->bar(n};
}

main(int argc, char *argv[}) {
int n = atol{argv{l});
f = new foo;
init_simulation(n);
EVENT (foobarEvent, (n)}, 1.0);
run_simulation();
print_event _stats();

11///17/// Test 3b:

¢include "/va/jil/event/event.h”
sinclude <stdlib.h>

class foo |
public:
void bar{int);
15

foo *f;

class foobarEvent : public Event {
public:
foobarEvent {int N) : n(N) {}
private:
int n;
void start{) { f->bar(n)}; }
14

void foo::bar{int n) {
event _delay(1.0);
if (--n > 0)
f->bar(n);
}

main(int argc, char *argv(]) {
int n = atoi(argv(l});
f = new foo;
init_simulation(n};
EVENT (focbarEvent, (n), 1.0);
run_simulation(};
print_event_stats();
117111117/ Test §:

#include */va/jil/event/event.h®
#include “/va/3il/event/resource.h"
#include <atdlib.h>

class CustomerObj {
public:
void Run(int);
5

CustomerObj *Cust;
Resource *Res;

class RunEvent ; public Event {
public:
RunEvent (int n) : N{n) {}
void start () { Cust->Runi{N); |
int N;
IH

vold CustomerObj::Run{int n) |
1f (n> 1)
EVENT (Runvent, (n - 1), 0.0};
Res->give(l};
avent delay(1.0);
Res->take_back (1);
}

main({int argc, char *argv({]) {
int 1 = atol(argv(l}):
init_simulation();
Cust = new CustomerObj;
Res = new Resource;
Res->create(l);
EVENT (RunEvent, (1), 0.0);
run_simulation();
print_event stats{);

/177777777 Test 5:

#include */va/j)il/event/event.h*
tinclude “/va/3d{l/event/interrupt.h*
#include <stdlib.h>.

class foo |
public:
void Tripper{int};
void Trippee{int);
2

foo *f;
EID Trippee_eid;
DECLARE_INTERRUPT (Trip_Interrupt);

void foo::Trippee(int n) |{
for {int 1 = 0; 1 < n; i+4) {
TRAP event_delay(100.0);
HANDLE (Trip_Interrupt};
END_TRAP;
}
}

vold foo::Tripper(int n) {
for (int 1 = 0; 1 < n; 1++4) {
event_delay(1.0);
event interrupt (Trippee_eid, Trip Interrupt);
t
}

class fooTrippeeEvent : public Eveni |
public:
fooTrippeetvent (fou *f, int n) : F(f), N(n} {}
private:
foo *F;
int N;
void start () { F->Trippee(N); }
bs

class fooTripperEvent : public Event {

public:
fooTripperEvent (foo *f, int n) : F{f), N{(n) {}
private:
foo *F;
int N;
void start() { F-~>Tripper(N); }
IH

main(int argc, char *argv{}]) !
int n = atoi(argv{l]);
f = new foo;
init_simulation{()j;
EVENT (fooTripperEvent, (f,n), 0.0);
EVENT (fooTrippeeEvent, (f,n), 0.0);
run_simulation();
print_event_stats(); .

/////7//77// Sim (the bank simulation):

#include “/va/jil/event/event.h*
#include “/va/jil/event/interrupt.h*
#include “/va/jil/event/resource. h*
$include <MLCG.h>

finclude <Erlang.h>

#include <NegativeExpntl.h>

#include <DiscreteUniform.h>
¢include <limits.h>

finclude <stream.h>

MLCG randomgen;
DiscreteUniform rand gende-{0, 1, &randomgen);

Erlang rand_nature(l.0, 1.0, &randomgen);
// change params later to meanNatureCallsTime and
varianceNatureCallsTime

Erlang rand_line(l.0, 1.0, &randomgen);
// change params later to mearLineTolerance and
variancelineTolerance

Erlang rand_frest (5.0, 8.0, &randomgen);
Erlang rand_mrest (3.0, 6.0, &randomgenj;

DiscreteUniform rand numlines(0, 1, &randomgen);
// change max to numlines - 1

Erlang rand serve(l.0, 1.0, &randomgen);
// change mean later to meanServiceTime,
varianceServiceTime;

NegativeExpntl rand_custarrive(l.0, &randomgen);
// change mean later to meanInterArriveTime

NegativeExpntl rand_viparrive(l.0, &randomgen);
// change mean later to meanVIPInterArriveTime

enum Gender [Female, Male};

class LineObj : public Resource {
public:
class CustomerObj *serving;
EID service eid; N
void ServeCust (class CustomerObj *cust);

I}
typedef LineObj *LineCbjP;

class ServeCustEvent : public Event {
public:
ServeCustEvent (LineObj *1, CustomerObj *c)
L{1), Cc) {}
void start(} { L->ServeCust (C); |}
private:
LineObj *L;
CustomerObj *C;

78

typedef Resource RestRoom;

class CustomerObj {
public:
Gender myGender;
Customerobj();
virtual void GetOnLine();
vold VisitFacilities();
virtual int isVIP() { return 0; }
private:
LineObj *FindBestLine();
IH

class GetOnLineEvent :
public:
GetOnLineEvent (CustomerObj *c) :
void start () { C->GetOnLine(); }
private:
CustomerObj *C;

public Event {

Clc) {}

14

class VIPOb) : public CustomerObj ({
public:
void GetOnLine();
int 1sVIP() { return 1; }
N

class CustGenerator : public Event {
protected:
NegativeExpntl *interArrive;
virtual void newCust ()} { CustomerObj *co = new
CustomerObi; |
public:
CustGenerator () :
{

¥

interArrive {(érand_custarrive)
void start();
class VIPGenerator :

protected:
virtual void newCust ()

public CustGenerator |

{ VIPOb3j *vo = new VIPObj];
]
public:

VIPGenerator () { interArrive = &rand_viparrive; |
IH

CustomerObj: :CustomerObij () {
myGender = rand_gender ();
EVENT (GetOnlLineEvent, (th.s), 0.0);

}
DECLARE _INTERRUPT (Nature Calls_Interrupt);

class NatureCallsEvent :
public:
NatureCallsEvent ()} { eid = Current EID{()}; }
vold start () { event_interrupt (eid,
Nature Calls_Interrupt); }
orivate:
EID eid;

public Event |{

b

double
double
double
double
double
double
double

hoursToRun;
meanInterArriveTime;
meanVIPInterArriveTime;
meanNatureCallsTime;
varianceNatureCallsTime;
meanlineTolerance;
variancelineTolerance;
double meanServiceTime;

double varianceServiceTime;
int numLines;

LineOk; **alllines;

RestRoom *restRooms(21;

long seed;

"1t
int
int
int
int
int

numCusts = 0;

numVips = 0;
numCustLeaving = 0;
numMadvips = 0;
numNatureCalls = 0;
numVipInterrurts = 0;

79

Sim_Time totalTimeUntilServed = 0.0;
Sim_Time totalCustServiceTime = 0.0;
void CustomerObj::GetOnLine() |{
LineObj *myLine;
Sim Time timeTillNatureCalls;
// numCusts++;
EID timeout;
Sim Time time = simulation_time();

for(;;) {
for (;2) |
timeTillNatureCalls = rand_nature();
myLine = FindBestline();
. timeout = EVENT (NatureCallsEvent, (},
timeTillNatureCalls);
TRAP

{
myLine->give(l);
break;
} HANDLE (Nature Calls_Interrupt)
VisitFacilities({);
END_TRAP;

}

totalTimeUntilServed += simulation_time() -
time;

event_terminate(timeout);

// time = simulation time();

myLine->ServeCust (thls);

// totalCustServiceTime += simulation_time() -
time;

myLine->take_back(1l);

break;

delete this;
}

void CustomerObj::VisitFacilities() {
RestRoom *restRoom;
int restRoomLineTolerance;
// numNatureCalls++;
restRoom = restRooms[myGender);
restRoomLineTolerance = int (rand_line() + 0.5);
if (restRoom->num pending() >
restRoomLineTolerance} {
delete this;
// numCustLeaving++;
event_terminate(};
} else {
restRoom->give(l);
event_delay ((myGender == Female)? rand_frest():
rand _mrest())};
restRoom->take_back {1);
}
}

LineObj *CustomerObi::FindBestLine() {
LineObj *line, *bestLine;
int length, bestlength;

bestLength = INT MAX;
for (int i = 0; T < numlines; i++) {
line = alilines[i];
length = line->num_pending();
if (line->available() == 0) length++;
if (length < bestlength) {
bestLength = length;
bestlLine = line;
}
}
r-.1rn bestLine;
}

DECLARE_INTERRUPT(VIP_Arrives_Interrupt);
DECLARE_ INTERRUPT (VIP_Leaves_Interrupt);

vold VIPObj::GetOnLine() {
LineObj *line;
CustomerObj *oldCust;
// numVips++;
int nline = int(rand_numlines());
iine = alllLinrs(nline);
o0ldCust = line->serving;

EID oldservice = line->service eid;
if (oldCust} { -
if (oldCust=->isVIP()) {
// numMadVips++;
return;

// numVipInterrupts++;
event_interrupt {(oldservice,
VIP_Arrives Interrupt);
} else
line->give(l);
line->ServeCust (this);
1f (oldCust}
event _interrupt (oldservice,
VIP_leaves_Interrupt);
~ else
line->take_back (1};
delete this;
I

voild LineObi::ServeCust (CustomerObj *cust) {
Sim _Time svcTime, startTime;

svcTime = rand_serve();
for(;;) |
service_eid = Current EID(};
startTime = simulation time();
serving = cust; -
if (svcTime <= 0.0}
break;
TRAP {
event delay (svcTime);
serving = 0;
break;
} HANDLE (VIP_Arrives Interrupt) |{
svcTime -= simuTation time() - startTime;
TRAP event_suspend();
HANDLE (VIP Leaves Interrupt);
END TRAP; ~ B
| END_TRAP;
]

voild CustGenerator::start{} |{
CustomerObj *customer;

Sim_Time waitTime;

for (;;) |
waitTime = (*interArrive) {};
event _delay(waitTime);
newCust () ;
}
}

class EndSim
public:
void start!) |
print_event stats{);
HALT () ;
!

public Event

1;

main() |
restRooms[Fema.e! = new Res.Room;
restRooms{Male] = new Restkoom;
restRooms{remale!->create (4);
restRooms{Male ' ->creaze(41;
cout << "T-+ Simuiaticrn 'Lines ana Hest Rooms'
stariing~=-\n";
cout << “What .s the mear cJustomer :nterarriva.
time in minutes? *;

cin >> meanlnterArr.veT.me;

rand custarrive . meani{reanirterArriveTime};

cout << "Wrat is the mean VIP interarrival time
in minutes? *;

cin >> meanviPinterArriveTime;

rand viparri.ve.mear (meanViPInterArriveTime);

cout << "Wnhat is tne mean service time in
minutes? "~;

cin >> meanServ.cel re;

rand serve mean (meanServicel.me);

80

cout << "What is the variance of the service
time? “;

cin >> varlanceServiceTime;

rand_serve.variance(varianceServiceTime);

cout << "What is the mean time in minutes till
‘Nature Calls'? *;

cin >> meanNatureCallsTime;

rand_nature.mean (meanNatureCallsTime);

cout << "What ls the variance? *;

cin >> varianceNatureCallsTime;

rand_nature.variance (varianceNatureCallsTime);

cout << "What is the mean restroom line length
tolerance? “;

cin >> meanLineTolerance;

rand_line.mean (meanlLineTolerance);

cout << "“What 1s the variance? *;

cin >> variancelineTolerance;

rand line.variance(variancelineTolerance);

cout << “How many lines are there? *;

cin >> numlines;

rand_numlines.high(numLines-1};

cout” << “How many hours should the simulation
run? =,
cin >> hoursToRun;
cout << “Random Seed? “;
cin >> seed;
cout << "\nMean Interarrive Time: * <<
meanInterArriveTime << "\n%;

cout << “Mean VIP Interarrive Time:
meanvIPInterArriveTime

" <<

<< *\n";

cout << *Mean Service Time: % << meanServiceTime
<< "\n*;

cout << "Variance Service Time: " <<
varlanceServiceTime << *\n*;

cout << "Mean ‘'Nature Calls' Time: " <<

meanNatureCallsTime << ®*\n";

cout << “"Variance 'Nature Calls’
varianceNatureCallsTime << “\n%;

cout << “Mean line length tolerance: * <<
meanLineTolerance << “\n%;

cout << "Variance line length tolerance: * <<
variancelineTolerance << "\n%;

cout << “Number of lines: * <<

cout << “Hours to run: " <<

Time: * <<

numLines << *\n*;
hoursToRun << *\n*;

alllines = new LineObijP([numLines];

for (int k = 0; k < numLines; k++} {
LineOb3j *line = new lLineObj:;
line->create{1);
alllines(k] = line;

}

randomgen.reseed (seed, seed);

init_simulation (4000, 2000):

EVENT (EndSim,, hoursToRun * 60.0);
EVENT (CustGenerator, (), 0.0);
EVENT {(VIPGenerator, ()}, 0.0);

rur_simulation{);

/e
cout << numCusts << * customers arrived.\n*;
cout << numVips << * VIPs arrived.\n";
coul << numMadVips << * VIPs left angrily.\n";
cout << "There were * << numNatureCalls << *

visits to the

restrooms,\n";
cout << numViplnterrupts << ® customers were
interrupted by ViPs.\n";
cout << numCustleaving << " customers left
without being served.\n"“;
cout << "The average customer service time was *
<<
totaiCust erviceTime ,;, (numCusts -
numCust Leaving) << " in%;
cout << *"The average cus*omer walt time was * <<
totaiTimelnt! .Served / (numCusts -
numCust Leavingl << "\n®;

for (k = 0; k < numLines; k++) {
cout << *\nThe statistics for the length of
line #* << k+l <<
% are:\n*%;
allLines{k)->report_stats();

cout << *\nThe statistics for the length of the
mens room line
are:\n";

restRooms [Male]->report_stats();

cout << “\nThe statistics for the length of the
ladies room line
are:\n";

restRooms [Female]->report_stats();

*/

print_event_stats();

81

APPENDIX F

ERIC CODE

2:: testl
{define-class Nothing (:parents Something))
(ask Nothing when receiving {bar) nil)

{defun testl (n)
(declare (type fixnum n))
{ask Nothing make instance foo)
{(dotimes (i n)
{declare (type fixnum 1))
{ask clock to schedule !foo to (bar)
at ! (random 1000)))
{ask clock run to completion))

(defvar *Nothings*)

{(defun testla-internal (n)
(dec.are (type fixnum n))
(do.:mes (i n)
(declare (type fixnum i)}
(let ((x (svref *nothings* 1)))
{ask clock to schedule !x to (bar) at
! {random 1000))})
(ask clock run to completion))

{defun testla (n)
(let ((*nothings*
{dotimes (i n)
{setf (aref *nothings* i)
make instance foo)})
(time (testla-internal n})))

(make-array nj))}

{ask Nothing

ssitest2

(define-class Nothing (:parents Something))
(ask Nothing when receiving (bar >m)

{(1f (> m 1) (ask clock to schedule !self to {(bar
t (decf m)) at 0)))

(defun nextbaz (n)
{declare (type fixnum n))
(1f >n1l
(let {((n-1 (1- n)))
{declare (type fixrua n-1))
{ask clock to schedule !foo to (baz !n-1) at
o))

(ask Nothing when receiving (baz >n)
(nextbaz n))

{defun test2 {n)
(declare (type fixnum n))
(ask clock set your simtime to 0)
(ask Nothing make instance foo)
{ask clock to schedule !foo to {(bar !n) at 0)
(ask clock run to completion))

;:rtest3a
(define-class Nothing (:parents Something))
{pcl:defmethod barl ((self Nothing) n)
(when (plusp (decf n})
(barl self n)))
{ask Nothing when receiving {(bar >n)
(decf n)
(barl self n))

{defun test3a (n)
{(declare (type fixnum n))

83

(ask
{ask
{ask
(ask

clock set your simtime to O}

Nothing make instance foo)

clock to schedule !foo to (bar !n} at 0)
clock run to completion))

;::test3b
(define-class Nothing (:parents Something))

(pcl:defmethod barl ((self Nothing) n)
(declare (type fixnum n))
{(when (plusp (decf n})}
(ask clock to schedule !self to
(complete-bar !n) in 1 second))}

(ask Nothing when recelving (bar >n)
(barl self n))

(ask Nothing when receiving (complete-bar >n)
(barl self n))

(defun test3b (n)
(declare (type fixnum n))
(ask clock set your simtime to 0)
{(ask Nothing make instance foo)
{ask clock to schedule !foo to (bar !n) at 0)
(ask clock run to completion))

sirtestd
(define~class Nothing (:parents Something))

(ask Nothing when receiving (run >n)
{(when (> n 1)
{ask clock to schedule !self to (run ! (1- n))
in 0 seconds))
{(ask res give 1 and ask !self run2 !n))

{ask Nothing when receiving (run2 >n)
(ask clock to schedule !self to (run3 !n) in 10
seconds))

(ask Nothing when receiving (run3 >n)
(ask res take-back 1))

(defun test4 (n)

(declare (type fixnum n))

(ask resource make instance res)

(ask res create 1)

{(ask Nothing make instance cust}

(ask clock to schedule !cust to (run In) in 0
seconds)

(ask clock run to completion))

INTERNAL
A010

R. D. Haggarty
B.M. Horowitz

A030

R. W. Jacobus
H. W. Sorenson
L. M. Thomas
D010

E. J. Ferrari
D. D. Neuman

D040

D. 1. Buckley
G. J. Koehr

J. C. Naylor, Jr.
D050

R. A. McCown
E. A. Palo

E. N. Skoog
D060

J. K. DeRosa

C. H. Nordstrom, Jr.

D070

E. H. Bensley (10)
A. L. Buchanan

J
C.
D. A MacQueen, Jr.
M. A. Makhlouf

DISTRIBUTION LIST

T. F. Saunders
D071
J. M. Apicco

D. Amano

. R. Cherniack

. Cottrell, Jr.

. Dallas

. Drake
Eachus

. Ernst

. Franciskovich
. Francoeur

. Furey-Deffely
. Giddings (10)
M Hornish

. Houchens

. Krupp
Lambe

. Lesch

R Lord

. S. Lyons
. W. Noel

. F. Paton
J Pelsinski
. C. Robinson
.E. Rothberg
. Sateriale

am>>o~>>”

>§UTJ"U€7UUZ7U""‘U"‘€<7U""UWWU"U"“"‘
‘-.V’(')>

J. kacl

S. R. Friedman
J. R. Knobel
M. T. Owens
T. J. Reale, Jr.
T. B. Rice

T. C. Royer

D074

T. K. Backman

P. A. Brown

W. C. Carter

L. P. Costa

S. 1. Frank

G. M. Friedman

J. Gates

J. A. Gunter

M. Hazle

L. J. Holtzblatt

A. L. Kosmala

Loizides

A. Martin
McGue

C.
R.
R.J.
F. R. Murphy
R. S.

C. H. Gager
S. M. Newman

D090

L. S. Metzger
S. J. Pomponi

F044

M. A. Fabrizi
1. Frolow

F084

P. T. R. Wang
G010

V. A. DeMarines
G030

N. E. Bolen
R. F. Nesbit

Ef L. Laffcrty
. Nadel

J

J

M. T. Maybury
A. M. Wollrath
G

B.

G117

T. J. Brando

H. G. Goldman
P. J. Guay

D. M. Johnson
L. G. Monk

J. T. Trostle

R. J. Watro (20)
A. M. Wollrath

JO70

J. G. Sprung
JO80

H. Carpenter
D. H. Gill

R. P. Granato
F. X. Maginnis
A. Sears

J. K. Summers
J082

H. Cohen
W153

M. L. Kahn
W156

W. P. Niedringhaus

87

